IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v180y2024ics0191261524000110.html
   My bibliography  Save this article

A data-driven optimization approach to improving maritime transport efficiency

Author

Listed:
  • Yan, Ran
  • Liu, Yan
  • Wang, Shuaian

Abstract

Ship inspections conducted by port state control (PSC) can effectively reduce maritime risks and protect the marine environment. The effectiveness of PSC depends on accurately selecting ships with higher risk for inspection. Ship risk profile (SRP) is currently the most common method of quantifying ship risk, but the thresholds of the factors that determine a ship’s risk and classification in the SRP framework are subjective and can make the ship selection process less efficient. In this study we propose a data-driven bi-objective nonlinear programming model, referred to as the SRP+ model, to optimize the thresholds in the original SRP framework. To solve the model, we first linearize the nonlinear optimization model using the big-M method, and then develop an augmented epsilon-constraint method to transform the bi-objective model to a single-objective model and obtain all Pareto optimal solutions. We also conduct a case study using real PSC inspection records at the Hong Kong port to construct and validate the SRP+ model. The results suggest that the threshold of the total weighting points to classify a ship as high-risk ship should be slightly increased, the thresholds of ship age should be significantly increased, the threshold of historical deficiency number should be increased, while the threshold of historical ship detention times should be decreased. The proposed SRP+ model can benefit both conservative and open-minded port authority decision makers by identifying ships with more deficiencies and/or higher detention probability more efficiently. The model can also be applied to other risk management problems in transportation and supply chain management, in addition to the maritime transport domain.

Suggested Citation

  • Yan, Ran & Liu, Yan & Wang, Shuaian, 2024. "A data-driven optimization approach to improving maritime transport efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000110
    DOI: 10.1016/j.trb.2024.102887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:180:y:2024:i:c:s0191261524000110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.