IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v179y2024ics0191261523001807.html
   My bibliography  Save this article

Maximum capture problem based on paired combinatorial weibit model to determine park-and-ride facility locations

Author

Listed:
  • Kitthamkesorn, Songyot
  • Chen, Anthony
  • Ryu, Seungkyu
  • Opasanon, Sathaporn

Abstract

Park-and-ride (P&R) facilities are key components in encouraging people to use the transit system by allowing them to leave their private vehicles at certain locations. The well-known multinomial logit (MNL) model is often used to develop a random utility maximization–based mathematical programming formulation to determine P&R facility locations. According to the independently and identically distributed (IID) assumption, the MNL model cannot account for the route similarity and user heterogeneity. This study provides a new mixed integer linear programming (MILP) formulation by incorporating a newly developed paired combinatorial weibit (PCW) model to relax the IID assumption for determining the optimal P&R facility location. Specifically, the incorporation of a copula derived from a generalized extreme value (GEV) model addresses the issue of route overlap within the context of the PCW model. In addition, using the Weibull distribution permits the consideration of heterogeneous perception variance. Its two-level tree structure for evaluating the marginal and conditional probabilities allows a linearization scheme to obtain a set of linear constraints. Numerical examples reveal the influence of the IID assumption relaxation on the results. The two probabilities from the tree structure and the binary location variables are combined to present a corresponding PCW model under open/close P&R facility solution. According to the degree of route overlapping and route-specific perception variance, the fare structure, particularly the distance-based scheme, has an impact on the number of P&R users and location at optimum.

Suggested Citation

  • Kitthamkesorn, Songyot & Chen, Anthony & Ryu, Seungkyu & Opasanon, Sathaporn, 2024. "Maximum capture problem based on paired combinatorial weibit model to determine park-and-ride facility locations," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transb:v:179:y:2024:i:c:s0191261523001807
    DOI: 10.1016/j.trb.2023.102855
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:179:y:2024:i:c:s0191261523001807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.