IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v178y2023ics019126152300173x.html
   My bibliography  Save this article

Scalable reinforcement learning approaches for dynamic pricing in ride-hailing systems

Author

Listed:
  • Lei, Zengxiang
  • Ukkusuri, Satish V.

Abstract

Dynamic pricing is a widely applied strategy by ride-hailing companies, such as Uber and Lyft, to match the trip demand with the availability of drivers. Deciding proper pricing policies is challenging and existing reinforcement learning (RL)-based solutions are restricted in solving small-scale problems. In this study, we contribute to RL-based approaches that can address the dynamic pricing problem in real-world-scale ride-hailing systems. We first characterize the dynamic pricing problem with a clear distinction between historical prices and current prices. We then translate our dynamic pricing problem into Markov Decision Process (MDP) and prove the existence of a deterministic stationary optimal policy. Our solutions are based on an off-policy reinforcement learning algorithm called twin-delayed deep determinant policy gradient (TD3) that performs offline learning of the optimal pricing policy using historical data and applies the learned policy to the next time slot, e.g., one week. We enhance TD3 by creating three mechanisms to reduce our model complexity and enhance training effectiveness. Extensive numerical experiments are conducted on both small grid networks (16 zones) and the NYC network (242 zones) to demonstrate the performance of the proposed algorithm. The results show our algorithm can efficiently find the optimal pricing policy for both the small and large networks, and can significantly enhance the platform profit and service efficiency.

Suggested Citation

  • Lei, Zengxiang & Ukkusuri, Satish V., 2023. "Scalable reinforcement learning approaches for dynamic pricing in ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transb:v:178:y:2023:i:c:s019126152300173x
    DOI: 10.1016/j.trb.2023.102848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152300173X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:178:y:2023:i:c:s019126152300173x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.