IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v177y2023ics0191261523001467.html
   My bibliography  Save this article

A dynamic multi-region MFD model for ride-sourcing with ridesplitting

Author

Listed:
  • Beojone, Caio Vitor
  • Geroliminis, Nikolas

Abstract

Dynamic network-level models directly addressing ride-sourcing services can support the development of efficient strategies for both congestion alleviation and promotion of more sustainable mobility. Recent developments presented models focusing on ride-hailing (solo rides) and traditional ride-sharing, but no work addressed ridesplitting (a type of ride-sourcing service with shared rides) in dynamic contexts. Here, we sought to develop a dynamic aggregated traffic network model capable of representing ride-sourcing services and background traffic in a macroscopic multi-region urban network. We combined the Macroscopic Fundamental Diagram (MFD) with detailed state-space and transition descriptions of background traffic and ride-sourcing vehicles in their activities to formulate mass conservation equations. Accumulation-based MFD models might experience additional errors due to the variation profile of trip lengths, e.g., when vehicles cruise for passengers. We integrate the so-called M-model that utilizes the total remaining distance to capture dynamics of regional and inter-regional flows and accumulations for different vehicle (private or ride-sourcing) states. This aggregated model is capable to reproduce the dynamics of complex systems without using resource-expensive simulations. We also show that the model can accurately forecast the vehicles’ conditions in near-future predictions (e.g., 30 min ahead). Later, a comparison with benchmark models shows lower errors in the proposed model in all states. Finally, we evaluate the model’s robustness to noises in its inputs, and forecast errors remain below 15% even where inputs are 20% off the actual values for ride-sourcing vehicles. The development of this model prepares the path for developing real-time feedback-based management policies such as priority-based perimeter control or repositioning strategies for idle ride-sourcing vehicles and developing regulations over ride-sourcing in congested areas.

Suggested Citation

  • Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:transb:v:177:y:2023:i:c:s0191261523001467
    DOI: 10.1016/j.trb.2023.102821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:177:y:2023:i:c:s0191261523001467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.