IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v182y2024ics0965856424000818.html
   My bibliography  Save this article

Managing network congestion with link-based incentives: A surrogate-based optimization approach

Author

Listed:
  • Fu, Quanlu
  • Wu, Jiyan
  • Wu, Xuemian
  • Sun, Jian
  • Tian, Ye

Abstract

Incentive-based travel demand management (IBTDM) programs endow monetary incentives to encourage travel demand redistribution across space and time. They are more appealing than alternatives such as congestion charging because commuters do not need to pay out of pocket. However, such congestion-alleviation solutions are usually managed by small private companies with constrained incentive budgets. Thus, the incentive should be wisely determined so that a limited incentive budget can be effectively used to fulfill maximum social welfare while maintaining the financial health of the IBTDM program. It is essential to know whether IBTDM is financially sound—that is, whether financial investment in IBTDM will lead to more than the equivalent value in total system travel time reduction. However, optimizing the link-based endowment scheme in a large-scale network is challenging because 1) the objective function and the budget constraint are both characterized by expensive-to-evaluate functions without closed form, and 2) it is a large-scale optimization problem that contains massive amount of decision variables. In this study, a computationally efficient surrogate-based optimization framework that is suitable for high-dimensional problems is proposed. A simulation-based dynamic traffic assignment model is used to evaluate the performance of transportation systems, and a Kriging model with partial least squares acts as the surrogate to approximate the simulation model. The results show that the optimal network-wide link-based incentive scheme improves the performance of the system. The higher the incentive budget, the more effective the incentive and the lower the marginal utility of the incentive. Furthermore, in a well-designed incentive scheme, a $1M investment in IBTDM would lead to much more than the equivalent of $1M in total system travel time reduction, which proves the economic viability of IBTDM and provides support for its promotion. IBTDM implemented within smaller regions and tighter incentive budgets produces higher utility ratios.

Suggested Citation

  • Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:transa:v:182:y:2024:i:c:s0965856424000818
    DOI: 10.1016/j.tra.2024.104033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424000818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:182:y:2024:i:c:s0965856424000818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.