IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v178y2023ics0965856423002987.html
   My bibliography  Save this article

Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee

Author

Listed:
  • Shah, Nitesh R.
  • Ziedan, Abubakr
  • Brakewood, Candace
  • Cherry, Christopher R.

Abstract

Shared e-scooter systems are one of the fastest-growing micromobility modes in the United States. In response to service providers’ rapid deployment of e-scooter vehicles, several city governments have regulated shared e-scooters through permits and pilot programs, including the number of service providers, their fleet size, and provisions for expanding/downsizing the fleet size. However, the literature lacks an empirical analysis of the demand elasticity of shared e-scooters. We used a Poisson fixed effects regression to evaluate the demand elasticity of e-scooter vehicle deployment using the Shared Urban Mobility Device (SUMD) dataset from Nashville, Tennessee, between March 1, 2019 and February 2020. This dataset included disaggregated e-scooter trip summary data and vehicle location data that updates approximately every five minutes. We also estimated land-use specific demand elasticity of e-scooter vehicle deployment by clustering Traffic Analysis Zones (TAZs) using the K-means algorithm. We found that the average daily demand elasticity of e-scooter vehicle deployment is inelastic (0.64). Service providers with large fleet sizes (>500 average daily e-scooters) have a demand elasticity of e-scooter deployment that is 1.8 times higher than that of medium fleet-sized service providers (250–500 average daily e-scooters). Fleet size is likely correlated to service provider-specific attributes such as vendor popularity, brand loyalty, and rideshare services. We also found a significant difference in demand elasticity of e-scooter deployment for land use types, with university and park & waterfront land uses having the highest elasticity values. These findings could be helpful for city governments to identify the optimal number of service providers and fleet sizes to permit so that demand is fulfilled without an oversupply of e-scooter vehicles in public spaces.

Suggested Citation

  • Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transa:v:178:y:2023:i:c:s0965856423002987
    DOI: 10.1016/j.tra.2023.103878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:178:y:2023:i:c:s0965856423002987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.