IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v178y2023ics0965856423002835.html
   My bibliography  Save this article

A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure

Author

Listed:
  • Golsefidi, Atefeh Hemmati
  • Hüttel, Frederik Boe
  • Peled, Inon
  • Samaranayake, Samitha
  • Pereira, Francisco Câmara

Abstract

As Electric vehicle (EV) adoption increases worldwide, public charging infrastructure must be expanded to meet the growing charging demand. Furthermore, insufficient and improperly deployed public charging infrastructure poses a real risk of slowing EV adoption. The infrastructure thus needs to be expanded intelligently and flexibly while accounting for uncertain dynamics in future charging demand. Nevertheless, current methods for demand-based expansion often rely on rigid and error-prone tools, such as travel surveys and simple rules of thumb. The former is more appropriate for long-term, equilibrium scenarios, where we consider the charging network as a whole rather than incrementally expanding it. At the same time, the latter relies on business experience in a rapidly changing field. We propose a predictive optimization approach for intelligent incremental expansion of charging infrastructure. At each time step, we estimate the future charging demand through a Gaussian Process, which is subsequently used in a linear chance-constrained optimization method to expand the charging infrastructure incrementally. To develop and validate this framework, we account for environmental feedback by simulating user behavior changes based on historical charging records and considering an optimized charging network at every iteration. We apply this approach to a case study of EV charging in Dundee, Scotland. We compare different strategies and reasons for their pros and cons for monthly incremental expansion of the charging network. In particular, combining machine learning and optimization results in the cheapest expansion and one that serves the most demand.

Suggested Citation

  • Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transa:v:178:y:2023:i:c:s0965856423002835
    DOI: 10.1016/j.tra.2023.103863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:178:y:2023:i:c:s0965856423002835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.