IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v176y2023ics0965856423002409.html
   My bibliography  Save this article

Social groups in pedestrian crowds as physical and cognitive entities: Extent of modeling and motion prediction

Author

Listed:
  • Feliciani, Claudio
  • Jia, Xiaolu
  • Murakami, Hisashi
  • Ohtsuka, Kazumichi
  • Vizzari, Giuseppe
  • Nishinari, Katsuhiro

Abstract

Most pedestrian crowds are composed of social groups that are typically formed by dyads (two members), triads (three members), or larger groups. Depending on the context, social groups may make up half or even more of the membership of the crowd. Therefore, understanding their motion is crucial for predicting crowd dynamics. The presence of social groups modifies crowd behavior. When the proportion and size of groups are known, crowd motion (e.g., the “flow” of passengers collectively moving inside a train station) could become predictable. However, a bidirectional flow experiment performed in 2010 revealed that the presence of groups could lead to partially surprising results because crowds composed of small social groups moved more smoothly than those composed of individuals (singletons). Results were partially disregarded because of statistical insignificance. A subsequent experiment in 2015 with latest tracking techniques resulted in similar results and investigated the cause of the superior flow in the presence of groups. The results revealed that when groups arrange themselves in certain shapes, their partially “obstructing” nature (in a counterintuitive manner) facilitates lane formation, which benefits overall crowd motion. Because the arrangement of a dyad, i.e., whether both members walk next to each other or in a front–back alignment, is partially linked to the coordination (or the lack thereof) between both members, predicting such a mechanism is difficult. Simulation results from a commercial software program confirmed that predicting the dynamics of social groups is not trivial; however, at the macroscopic scale, some general trends are depicted at least from a qualitative perspective. This study revealed that, whenever possible, several crowd composition patterns should be considered when planning crowd events or drafting safety guidelines for pedestrian facilities. Depending on the context, crowds composed of individuals may move smoother than social groups do, and the worst-case scenario should be used for determining safety margins. Thus, we revealed that predicting the motion of crowds composed of social groups is difficult because the microscopic organization within the group determines overall crowd dynamics. Although this internal organization may result in counterintuitively efficient group structures, the occurrence of such conditions depends on several variables, which renders crowd control in social groups complex, requiring close monitoring especially at high densities.

Suggested Citation

  • Feliciani, Claudio & Jia, Xiaolu & Murakami, Hisashi & Ohtsuka, Kazumichi & Vizzari, Giuseppe & Nishinari, Katsuhiro, 2023. "Social groups in pedestrian crowds as physical and cognitive entities: Extent of modeling and motion prediction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002409
    DOI: 10.1016/j.tra.2023.103820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:176:y:2023:i:c:s0965856423002409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.