IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v176y2023ics096585642300215x.html
   My bibliography  Save this article

A machine learning approach to analyzing spatiotemporal impacts of mobility restriction policies on infection rates

Author

Listed:
  • Young Song, Annie
  • Lee, Seunghyeon
  • Wong, S.C.

Abstract

This study analyzed the impact of a range of policies that restrict travel accessibility and mobility on infection rates for the original strain of the virus during the first year of the COVID-19 crisis. We constructed a multidimensional dataset and developed an effective data-driven predictive model to investigate causality between a policy, mobility, and an infection, drawing upon spatiotemporal perspectives. The multidimensional dataset included daily infections, daily restriction policies, and daily and hourly multimodal travel patterns. We quantified and normalized the dataset in relation to pre-COVID-19 policies and travel activities. A machine learning framework that integrated principal component analysis (PCA) and a Gaussian process regression (GPR) was formulated to evaluate the effectiveness of mobility restriction policies and their optimal implementation time during the infancy stage of the pandemic. In a case study, we selected Seoul in South Korea and Sydney in Australia for model calibrations and validations. Both countries deployed comprehensive urban restriction policies during the worldwide pandemic. The proposed model produced better performance than diverse non-parametric and parametric models to estimate the daily number of infections in the two areas. Furthermore, we discovered effective restriction policies and the best times to implement them to minimize the number of acquired COVID-19 cases by analyzing coefficients in PCA and GPR kernel functions. Our finding has far-reaching policy implications. First, the proposed methods can be used for formulating restriction policies for other regions with diverse population densities as the chosen cities in this case study. Second, our finding contributes to evidence-based policymaking.

Suggested Citation

  • Young Song, Annie & Lee, Seunghyeon & Wong, S.C., 2023. "A machine learning approach to analyzing spatiotemporal impacts of mobility restriction policies on infection rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transa:v:176:y:2023:i:c:s096585642300215x
    DOI: 10.1016/j.tra.2023.103795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642300215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:176:y:2023:i:c:s096585642300215x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.