IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v92y2014icp36-50.html
   My bibliography  Save this article

Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants

Author

Listed:
  • Holt, Galen
  • Chesson, Peter

Abstract

Temporal environmental variation is a leading hypothesis for the coexistence of desert annual plants. Environmental variation is hypothesized to cause species-specific patterns of variation in germination, which then generates the storage effect coexistence mechanism. However, it has never been shown how sufficient species differences in germination patterns for multispecies coexistence can arise from a shared fluctuating environment. Here we show that nonlinear germination responses to a single fluctuating physical environmental factor can lead to sufficient differences between species in germination pattern for the storage effect to yield coexistence of multiple species. We derive these nonlinear germination responses from experimental data on the effects of varying soil moisture duration. Although these nonlinearities lead to strong species asymmetries in germination patterns, the relative nonlinearity coexistence mechanism is minor compared with the storage effect. However, these asymmetries mean that the storage effect can be negative for some species, which then only persist in the face of interspecific competition through average fitness advantages. This work shows how a low dimensional physical environment can nevertheless stabilize multispecies coexistence when the species have different nonlinear responses to common conditions, as supported by our experimental data.

Suggested Citation

  • Holt, Galen & Chesson, Peter, 2014. "Variation in moisture duration as a driver of coexistence by the storage effect in desert annual plants," Theoretical Population Biology, Elsevier, vol. 92(C), pages 36-50.
  • Handle: RePEc:eee:thpobi:v:92:y:2014:i:c:p:36-50
    DOI: 10.1016/j.tpb.2013.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580913001111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2013.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Chesson & Jessica J. Kuang, 2008. "The interaction between predation and competition," Nature, Nature, vol. 456(7219), pages 235-238, November.
    2. Oecd, 2001. "Interconnection and Local Competition," OECD Digital Economy Papers 53, OECD Publishing.
    3. Kuang, Jessica J. & Chesson, Peter, 2010. "Interacting coexistence mechanisms in annual plant communities: Frequency-dependent predation and the storage effect," Theoretical Population Biology, Elsevier, vol. 77(1), pages 56-70.
    4. Colleen K. Kelly & Michael G. Bowler, 2002. "Coexistence and relative abundance in forest trees," Nature, Nature, vol. 417(6887), pages 437-440, May.
    5. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    6. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stump, Simon Maccracken & Chesson, Peter, 2017. "How optimally foraging predators promote prey coexistence in a variable environment," Theoretical Population Biology, Elsevier, vol. 114(C), pages 40-58.
    2. Kortessis, Nicholas & Chesson, Peter, 2019. "Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition," Theoretical Population Biology, Elsevier, vol. 130(C), pages 60-73.
    3. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stump, Simon Maccracken & Chesson, Peter, 2015. "Distance-responsive predation is not necessary for the Janzen–Connell hypothesis," Theoretical Population Biology, Elsevier, vol. 106(C), pages 60-70.
    2. Stump, Simon Maccracken & Chesson, Peter, 2017. "How optimally foraging predators promote prey coexistence in a variable environment," Theoretical Population Biology, Elsevier, vol. 114(C), pages 40-58.
    3. Yuan, Chi & Chesson, Peter, 2015. "The relative importance of relative nonlinearity and the storage effect in the lottery model," Theoretical Population Biology, Elsevier, vol. 105(C), pages 39-52.
    4. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    5. Chesson, Peter & Kuang, Jessica J., 2010. "The storage effect due to frequency-dependent predation in multispecies plant communities," Theoretical Population Biology, Elsevier, vol. 78(2), pages 148-164.
    6. Kortessis, Nicholas & Chesson, Peter, 2019. "Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition," Theoretical Population Biology, Elsevier, vol. 130(C), pages 60-73.
    7. Currie, William S. & Goldberg, Deborah E. & Martina, Jason & Wildova, Radka & Farrer, Emily & Elgersma, Kenneth J., 2014. "Emergence of nutrient-cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model," Ecological Modelling, Elsevier, vol. 282(C), pages 69-82.
    8. Rousselière, Damien & Joly, Iragäel, 2011. "A propos de la capacité à survivre des coopératives : une étude de la relation entre âge et mortalité des organisations coopératives agricoles françaises," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 92(3).
    9. Yılmaz, Zeynep & Maden, Selahattin & Gökçe, Aytül, 2022. "Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 526-539.
    10. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    11. Ammunét, Tea & Klemola, Tero & Parvinen, Kalle, 2014. "Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach," Theoretical Population Biology, Elsevier, vol. 92(C), pages 107-117.
    12. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    13. Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.
    14. Marcel Canoy & Paul de Bijl & Ron Kemp, 2004. "Access to telecommunications networks," Chapters, in: Pierre A. Buigues & Patrick Rey (ed.), The Economics of Antitrust and Regulation in Telecommunications, chapter 8, Edward Elgar Publishing.
    15. Israel Pagán & Carlos Alonso-Blanco & Fernando García-Arenal, 2009. "Differential Tolerance to Direct and Indirect Density-Dependent Costs of Viral Infection in Arabidopsis thaliana," PLOS Pathogens, Public Library of Science, vol. 5(7), pages 1-10, July.
    16. Zhang, Yu J. & Harte, John, 2015. "Population dynamics and competitive outcome derive from resource allocation statistics: The governing influence of the distinguishability of individuals," Theoretical Population Biology, Elsevier, vol. 105(C), pages 53-63.
    17. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
    18. Malard, Julien & Adamowski, Jan & Nassar, Jessica Bou & Anandaraja, Nallusamy & Tuy, Héctor & Melgar-Quiñonez, Hugo, 2020. "Modelling predation: Theoretical criteria and empirical evaluation of functional form equations for predator-prey systems," Ecological Modelling, Elsevier, vol. 437(C).
    19. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.
    20. Charles K Fisher & Pankaj Mehta, 2014. "Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:92:y:2014:i:c:p:36-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.