IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i3p313-d520236.html
   My bibliography  Save this article

Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia

Author

Listed:
  • Mouldi Gamoun

    (International Center for Agricultural Research in the Dry Areas (ICARDA), 2049 Ariana, Tunisia)

  • Mounir Louhaichi

    (International Center for Agricultural Research in the Dry Areas (ICARDA), 2049 Ariana, Tunisia)

Abstract

Natural rangelands occupy about 5.5 million hectares of Tunisia’s landmass, and 38% of this area is in Tataouine governorate. Although efforts towards natural restoration are increasing rapidly as a result of restoration projects, the area of degraded rangelands has continued to expand and the severity of desertification has continued to intensify. Any damage caused by disturbances, such as grazing and recurrent drought, may be masked by a return of favorable rainfall conditions. In this work, conducted during March 2018, we surveyed the botanical composition and species diversity of natural rangelands in Tataouine in southern Tunisia. The flora comprised about 279 species belonging to 58 families, with 54% annuals and 46% perennials. The Asteraceae family had the greatest richness of species, followed by Poaceae, Fabaceae, Amaranthaceae, Brassicaceae, Boraginaceae, Caryophyllaceae, Lamiaceae, Apiaceae, and Cistaceae. Therophytes made the highest contribution, followed by chamaephytes and hemicryptophytes. Of all these species, 40% were palatable to highly palatable and more than 13% are used in both traditional and modern medicine.

Suggested Citation

  • Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:3:p:313-:d:520236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/3/313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/3/313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Jauffret & Marjolein Visser, 2003. "Assigning plant life histories to better qualify arid land degradation in Presaharian Tunisia," ULB Institutional Repository 2013/115032, ULB -- Universite Libre de Bruxelles.
    2. Yongfei Bai & Xingguo Han & Jianguo Wu & Zuozhong Chen & Linghao Li, 2004. "Ecosystem stability and compensatory effects in the Inner Mongolia grassland," Nature, Nature, vol. 431(7005), pages 181-184, September.
    3. Azaiez Ouled Belgacem & Mounir Louhaichi, 2013. "The vulnerability of native rangeland plant species to global climate change in the West Asia and North African regions," Climatic Change, Springer, vol. 119(2), pages 451-463, July.
    4. Mathias, Andrea & Chesson, Peter, 2013. "Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities," Theoretical Population Biology, Elsevier, vol. 84(C), pages 56-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef Chebli & Mouad Chentouf & Jean-François Cabaraux & Samira El Otmani, 2023. "Floristic Composition, Diversity, Palatability, and Forage Availability of Forest Rangelands in the Southern Mediterranean Region of Northern Morocco," Land, MDPI, vol. 12(1), pages 1-18, January.
    2. Fathi Abdellatif Belhouadjeb & Abdallah Boumakhleb & Abdelhalim Toaiba & Abdelghafour Doghbage & Benbader Habib & Hassen Boukerker & Enrique Murgueitio & Walid Soufan & Mohamad Isam Almadani & Belkace, 2022. "The Forage Plantation Program between Desertification Mitigation and Livestock Feeding: An Economic Analysis," Land, MDPI, vol. 11(6), pages 1-16, June.
    3. Mounir Louhaichi & Mouldi Gamoun & Farah Ben Salem & Azaiez Ouled Belgacem, 2021. "Rangeland Biodiversity and Climate Variability: Supporting the Need for Flexible Grazing Management," Sustainability, MDPI, vol. 13(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kortessis, Nicholas & Chesson, Peter, 2019. "Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition," Theoretical Population Biology, Elsevier, vol. 130(C), pages 60-73.
    2. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    3. Mounir Louhaichi & Mouldi Gamoun & Farah Ben Salem & Azaiez Ouled Belgacem, 2021. "Rangeland Biodiversity and Climate Variability: Supporting the Need for Flexible Grazing Management," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    4. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    5. Jingyi Dong & Liming Tian & Jiaqi Zhang & Yinghui Liu & Haiyan Li & Qi Dong, 2022. "Grazing Intensity Has More Effect on the Potential Nitrification Activity Than the Potential Denitrification Activity in An Alpine Meadow," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    6. Wen Wang & Huamin Liu & Jinghui Zhang & Zhiyong Li & Lixin Wang & Zheng Wang & Yantao Wu & Yang Wang & Cunzhu Liang, 2020. "Effect of Grazing Types on Community-Weighted Mean Functional Traits and Ecosystem Functions on Inner Mongolian Steppe, China," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    7. Stump, Simon Maccracken & Chesson, Peter, 2017. "How optimally foraging predators promote prey coexistence in a variable environment," Theoretical Population Biology, Elsevier, vol. 114(C), pages 40-58.
    8. Saruul Kang & Wenjing Ma & Frank Yonghong Li & Qing Zhang & Jianming Niu & Yong Ding & Fang Han & Xiaoli Sun, 2015. "Functional Redundancy Instead of Species Redundancy Determines Community Stability in a Typical Steppe of Inner Mongolia," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
    9. Yang Liu & Qing Zhang & Qingfu Liu & Yongzhi Yan & Wanxin Hei & Deyong Yu & Jianguo Wu, 2020. "Different Household Livelihood Strategies and Influencing Factors in the Inner Mongolian Grassland," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    10. Xuefeng Zhang & Jianming Niu & Alexander Buyantuev & Qing Zhang & Jianjun Dong & Sarula Kang & Jing Zhang, 2016. "Understanding Grassland Degradation and Restoration from the Perspective of Ecosystem Services: A Case Study of the Xilin River Basin in Inner Mongolia, China," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    11. Kortessis, Nicholas & Chesson, Peter, 2021. "Character displacement in the presence of multiple trait differences: Evolution of the storage effect in germination and growth," Theoretical Population Biology, Elsevier, vol. 140(C), pages 54-66.
    12. Afshin Ghahramani & S. Mark Howden & Agustin del Prado & Dean T. Thomas & Andrew D. Moore & Boyu Ji & Serkan Ates, 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review," Sustainability, MDPI, vol. 11(24), pages 1-30, December.
    13. Xiuli Gao & Shihai Lv & Zhaoyan Diao & Dewang Wang & Daikui Li & Zhirong Zheng, 2023. "Responses of Vegetation, Soil, and Microbes and Carbon and Nitrogen Pools to Semiarid Grassland Land-Use Patterns in Duolun, Inner Mongolia, China," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    14. Marjolein Visser & Perrine Collin & A.O. Belgacem & Mohamed Neffati, 2012. "Argyrolobium uniflorum seedlings respond strongly to small doses of phosphorus: Consequences for rehabilitating degraded arid fallows in Presaharian Tunisia," ULB Institutional Repository 2013/115085, ULB -- Universite Libre de Bruxelles.
    15. Szabó, Péter, 2016. "Ideal free distribution of metabolic activity: Implications of seasonal metabolic-activity patterns on competitive coexistence," Theoretical Population Biology, Elsevier, vol. 111(C), pages 1-8.
    16. Ahmed Ibrahim Ahmed & Lulu Hou & Ruirui Yan & Xiaoping Xin & Yousif Mohamed Zainelabdeen, 2020. "The Joint Effect of Grazing Intensity and Soil Factors on Aboveground Net Primary Production in Hulunber Grasslands Meadow Steppe," Agriculture, MDPI, vol. 10(7), pages 1-19, July.
    17. Song, Zhiyuan & Feldman, Marcus W., 2013. "Plant–animal mutualism in biological markets: Evolutionary and ecological dynamics driven by non-heritable phenotypic variance," Theoretical Population Biology, Elsevier, vol. 88(C), pages 20-30.
    18. Devan Allen McGranahan, 2014. "Ecologies of Scale: Multifunctionality Connects Conservation and Agriculture across Fields, Farms, and Landscapes," Land, MDPI, vol. 3(3), pages 1-31, July.
    19. Edoardo Bellini & Raphaël Martin & Giovanni Argenti & Nicolina Staglianò & Sergi Costafreda-Aumedes & Camilla Dibari & Marco Moriondo & Gianni Bellocchi, 2023. "Opportunities for Adaptation to Climate Change of Extensively Grazed Pastures in the Central Apennines (Italy)," Land, MDPI, vol. 12(2), pages 1-22, January.
    20. Ji-Zhong Wan & Chun-Jing Wang & Fei-Hai Yu, 2017. "Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change," Climatic Change, Springer, vol. 144(2), pages 303-316, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:3:p:313-:d:520236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.