IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v90y2013icp49-55.html
   My bibliography  Save this article

Fixation probability of mobile genetic elements such as plasmids

Author

Listed:
  • Tazzyman, Samuel J.
  • Bonhoeffer, Sebastian

Abstract

Mobile genetic elements such as plasmids are increasingly becoming thought of as evolutionarily important. Being horizontally transmissible is generally assumed to be beneficial for a gene. Using several simple modelling approaches we show that in fact being horizontally transferable is just as important for fixation as being beneficial to the host, in line with other results. We find fixation probability is approximately 2(s+β), where s is the increased (vertical) fitness provided by the gene, and β the rate of horizontal transfer when rare. This result comes about because when the gene is rare, almost all individuals in the population are possible recipients of horizontal transfer. The ability to horizontally transfer could thus cause a deleterious gene to become fixed in a population even without hitchhiking. Our findings provide further evidence for the importance and ubiquity of mobile genetic elements, particularly in microorganisms.

Suggested Citation

  • Tazzyman, Samuel J. & Bonhoeffer, Sebastian, 2013. "Fixation probability of mobile genetic elements such as plasmids," Theoretical Population Biology, Elsevier, vol. 90(C), pages 49-55.
  • Handle: RePEc:eee:thpobi:v:90:y:2013:i:c:p:49-55
    DOI: 10.1016/j.tpb.2013.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580913000920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2013.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bichsel, Manuel & Barbour, Andrew D. & Wagner, Andreas, 2010. "The early phase of a bacterial insertion sequence infection," Theoretical Population Biology, Elsevier, vol. 78(4), pages 278-288.
    2. Howard Ochman & Jeffrey G. Lawrence & Eduardo A. Groisman, 2000. "Lateral gene transfer and the nature of bacterial innovation," Nature, Nature, vol. 405(6784), pages 299-304, May.
    3. Nigel Goldenfeld & Carl Woese, 2007. "Biology's next revolution," Nature, Nature, vol. 445(7126), pages 369-369, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aletheia Atzinger & Jeffrey G Lawrence, 2020. "Selection for ancient periodic motifs that do not impart DNA bending," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-25, October.
    2. João F Matias Rodrigues & Andreas Wagner, 2009. "Evolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    3. Brian D. Huang & Dowan Kim & Yongjoon Yu & Corey J. Wilson, 2024. "Engineering intelligent chassis cells via recombinase-based MEMORY circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Rohan Maddamsetti & Yi Yao & Teng Wang & Junheng Gao & Vincent T. Huang & Grayson S. Hamrick & Hye-In Son & Lingchong You, 2024. "Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Lashin, Sergey A. & Matushkin, Yury G. & Suslov, Valentin V. & Kolchanov, Nikolay A., 2012. "Computer modeling of genome complexity variation trends in prokaryotic communities under varying habitat conditions," Ecological Modelling, Elsevier, vol. 224(1), pages 124-129.
    6. Jennifer Kuzma & James Romanchek & Adam Kokotovich, 2008. "Upstream Oversight Assessment for Agrifood Nanotechnology: A Case Studies Approach," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 1081-1098, August.
    7. Startek, Michał & Le Rouzic, Arnaud & Capy, Pierre & Grzebelus, Dariusz & Gambin, Anna, 2013. "Genomic parasites or symbionts? Modeling the effects of environmental pressure on transposition activity in asexual populations," Theoretical Population Biology, Elsevier, vol. 90(C), pages 145-151.
    8. Jenny Wachter & Britney Cheff & Chad Hillman & Valentina Carracoi & David W. Dorward & Craig Martens & Kent Barbian & Glenn Nardone & L. Renee Olano & Margie Kinnersley & Patrick R. Secor & Patricia A, 2023. "Coupled induction of prophage and virulence factors during tick transmission of the Lyme disease spirochete," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Rajeev K Azad & Jeffrey G Lawrence, 2005. "Use of Artificial Genomes in Assessing Methods for Atypical Gene Detection," PLOS Computational Biology, Public Library of Science, vol. 1(6), pages 1-13, November.
    10. Benedetta Tuvo & Michela Scarpaci & Sara Bracaloni & Enrica Esposito & Anna Laura Costa & Martina Ioppolo & Beatrice Casini, 2023. "Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater," IJERPH, MDPI, vol. 20(10), pages 1-14, May.
    11. Yi-Long Hao & Gang Li & Zu-Fei Xiao & Ning Liu & Muhammad Azeem & Yi Zhao & Yao-Yang Xu & Xin-Wei Yu, 2021. "Distribution and Influence on the Microbial Ecological Relationship of Antibiotic Resistance Genes in Soil at a Watershed Scale," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    12. Ari J S Ferreira & Rania Siam & João C Setubal & Ahmed Moustafa & Ahmed Sayed & Felipe S Chambergo & Adam S Dawe & Mohamed A Ghazy & Hazem Sharaf & Amged Ouf & Intikhab Alam & Alyaa M Abdel-Haleem & H, 2014. "Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    13. Elia Salibi & Benedikt Peter & Petra Schwille & Hannes Mutschler, 2023. "Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Blath, Jochen & Tóbiás, András, 2021. "The interplay of dormancy and transfer in bacterial populations: Invasion, fixation and coexistence regimes," Theoretical Population Biology, Elsevier, vol. 139(C), pages 18-49.
    15. Eremwanarue Aibuedefe Osagie & Shittu Hakeem Olalekan & Eremwanarue Aibuedefe Osagie, 2019. "Multiple Drug Resistance- A Fast-Growing Threat," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(2), pages 15715-15726, September.
    16. Wu, Zuo-Bing, 2010. "Global transposable characteristics in the complete DNA sequence of the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5698-5705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:90:y:2013:i:c:p:49-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.