IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i24p5698-5705.html
   My bibliography  Save this article

Global transposable characteristics in the complete DNA sequence of the yeast

Author

Listed:
  • Wu, Zuo-Bing

Abstract

Global transposable characteristics in the complete DNA sequence of the Saccharomyces cevevisiae yeast is determined by using the metric representation and recurrence plot methods. On the basis of the correlation distance of nucleotide strings, 16 chromosome sequences of the yeast, which are divided into 5 groups, display 4 kinds of the fundamental transposable characteristics: a short increasing period, a long increasing quasi-period, a long major value and hardly relevant.

Suggested Citation

  • Wu, Zuo-Bing, 2010. "Global transposable characteristics in the complete DNA sequence of the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5698-5705.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:24:p:5698-5705
    DOI: 10.1016/j.physa.2010.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110007296
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katsaloulis, P. & Theoharis, T. & Zheng, W.M. & Hao, B.L. & Bountis, A. & Almirantis, Y. & Provata, A., 2006. "Long-range correlations of RNA polymerase II promoter sequences across organisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 308-322.
    2. Katsaloulis, P & Theoharis, T & Provata, A, 2002. "Statistical distributions of oligonucleotide combinations: applications in human chromosomes 21 and 22," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 380-396.
    3. Hao, Bai-Lin, 2000. "Fractals from genomes – exact solutions of a biology-inspired problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 225-246.
    4. Howard Ochman & Jeffrey G. Lawrence & Eduardo A. Groisman, 2000. "Lateral gene transfer and the nature of bacterial innovation," Nature, Nature, vol. 405(6784), pages 299-304, May.
    5. Oikonomou, Th. & Provata, A. & Tirnakli, U., 2008. "Nonextensive statistical approach to non-coding human DNA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2653-2659.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, R. & Silva, J.R.P. & Anselmo, D.H.A.L. & Alcaniz, J.S. & da Silva, W.J.C. & Costa, M.O., 2020. "An alternative description of power law correlations in DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Katsaloulis, P. & Theoharis, T. & Zheng, W.M. & Hao, B.L. & Bountis, A. & Almirantis, Y. & Provata, A., 2006. "Long-range correlations of RNA polymerase II promoter sequences across organisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 308-322.
    3. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Aletheia Atzinger & Jeffrey G Lawrence, 2020. "Selection for ancient periodic motifs that do not impart DNA bending," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-25, October.
    5. Rohan Maddamsetti & Yi Yao & Teng Wang & Junheng Gao & Vincent T. Huang & Grayson S. Hamrick & Hye-In Son & Lingchong You, 2024. "Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Lashin, Sergey A. & Matushkin, Yury G. & Suslov, Valentin V. & Kolchanov, Nikolay A., 2012. "Computer modeling of genome complexity variation trends in prokaryotic communities under varying habitat conditions," Ecological Modelling, Elsevier, vol. 224(1), pages 124-129.
    7. Craciun, Dana & Isvoran, Adriana & Avram, N.M., 2009. "Long range correlation of hydrophilicity and flexibility along the calcium binding protein chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4609-4618.
    8. da Silva, Sérgio Luiz Eduardo Ferreira, 2021. "Newton’s cooling law in generalised statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    9. Tazzyman, Samuel J. & Bonhoeffer, Sebastian, 2013. "Fixation probability of mobile genetic elements such as plasmids," Theoretical Population Biology, Elsevier, vol. 90(C), pages 49-55.
    10. Zhang, Linxi & Chen, Jin, 2005. "Scaling behaviors of CG clusters in coding and noncoding DNA sequences," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 115-123.
    11. Karakatsanis, L.P. & Pavlos, G.P. & Iliopoulos, A.C. & Pavlos, E.G. & Clark, P.M. & Duke, J.L. & Monos, D.S., 2018. "Assessing information content and interactive relationships of subgenomic DNA sequences of the MHC using complexity theory approaches based on the non-extensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 77-93.
    12. João F Matias Rodrigues & Andreas Wagner, 2009. "Evolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    13. Brian D. Huang & Dowan Kim & Yongjoon Yu & Corey J. Wilson, 2024. "Engineering intelligent chassis cells via recombinase-based MEMORY circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Jennifer Kuzma & James Romanchek & Adam Kokotovich, 2008. "Upstream Oversight Assessment for Agrifood Nanotechnology: A Case Studies Approach," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 1081-1098, August.
    15. Moghaddasi, Hanieh & Rezaei, Soghra & Darooneh, Amir Hossein & Heshmati, Emran & Khalifeh, Khosrow, 2020. "A comparative analysis of dipeptides distribution in eukaryotes and prokaryotes by statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    16. Jenny Wachter & Britney Cheff & Chad Hillman & Valentina Carracoi & David W. Dorward & Craig Martens & Kent Barbian & Glenn Nardone & L. Renee Olano & Margie Kinnersley & Patrick R. Secor & Patricia A, 2023. "Coupled induction of prophage and virulence factors during tick transmission of the Lyme disease spirochete," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Rajeev K Azad & Jeffrey G Lawrence, 2005. "Use of Artificial Genomes in Assessing Methods for Atypical Gene Detection," PLOS Computational Biology, Public Library of Science, vol. 1(6), pages 1-13, November.
    18. Benedetta Tuvo & Michela Scarpaci & Sara Bracaloni & Enrica Esposito & Anna Laura Costa & Martina Ioppolo & Beatrice Casini, 2023. "Microplastics and Antibiotic Resistance: The Magnitude of the Problem and the Emerging Role of Hospital Wastewater," IJERPH, MDPI, vol. 20(10), pages 1-14, May.
    19. Yi-Long Hao & Gang Li & Zu-Fei Xiao & Ning Liu & Muhammad Azeem & Yi Zhao & Yao-Yang Xu & Xin-Wei Yu, 2021. "Distribution and Influence on the Microbial Ecological Relationship of Antibiotic Resistance Genes in Soil at a Watershed Scale," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    20. Răzvan-Cornel Sfetcu & Sorina-Cezarina Sfetcu & Vasile Preda, 2021. "Ordering Awad–Varma Entropy and Applications to Some Stochastic Models," Mathematics, MDPI, vol. 9(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:24:p:5698-5705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.