IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v115y2017icp13-23.html
   My bibliography  Save this article

Inclusive fitness analysis of cumulative cultural evolution in an island-structured population

Author

Listed:
  • Ohtsuki, Hisashi
  • Wakano, Joe Yuichiro
  • Kobayashi, Yutaka

Abstract

The success of humans on the globe is largely supported by our cultural excellence. Our culture is cumulative, meaning that it is improved from generation to generation. Previous works have revealed that two modes of learning, individual learning and social learning, play pivotal roles in the accumulation of culture. However, under the trade-off between learning and reproduction, one’s investment into learning is easily exploited by those who copy the knowledge of skillful individuals and selfishly invest more efforts in reproduction. It has been shown that in order to prevent such a breakdown, the rate of vertical transmission (i.e. transmission from parents to their offspring) of culture must be unrealistically close to one. Here we investigate what if the population is spatially structured. In particular, we hypothesize that spatial structure should favor highly cumulative culture through endogenously arising high kinship. We employ Wright’s island model and assume that cultural transmission occurs within a local island. Our inclusive fitness analysis reveals combined effects of direct fitness of the actor, indirect fitness through relatives in the current generation, and indirect fitness through relatives in future generations. The magnitude of those indirect benefits is measured by intergenerational coefficients of genetic relatedness. Our result suggests that the introduction of spatial structure raises the stationary level of culture in the population, but that the extent of its improvement compared with a well-mixed population is marginal unless spatial localization is extreme. Overall, our model implies that we need an alternative mechanism to explain highly cumulative culture of modern humans.

Suggested Citation

  • Ohtsuki, Hisashi & Wakano, Joe Yuichiro & Kobayashi, Yutaka, 2017. "Inclusive fitness analysis of cumulative cultural evolution in an island-structured population," Theoretical Population Biology, Elsevier, vol. 115(C), pages 13-23.
  • Handle: RePEc:eee:thpobi:v:115:y:2017:i:c:p:13-23
    DOI: 10.1016/j.tpb.2017.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580917300382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2017.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aoki, Kenichi & Feldman, Marcus W., 2014. "Evolution of learning strategies in temporally and spatially variable environments: A review of theory," Theoretical Population Biology, Elsevier, vol. 91(C), pages 3-19.
    2. Wakano, Joe Yuichiro & Miura, Chiaki, 2014. "Trade-off between learning and exploitation: The Pareto-optimal versus evolutionarily stable learning schedule in cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 91(C), pages 37-43.
    3. Strimling, Pontus & Sjöstrand, Jonas & Enquist, Magnus & Eriksson, Kimmo, 2009. "Accumulation of independent cultural traits," Theoretical Population Biology, Elsevier, vol. 76(2), pages 77-83.
    4. Marcus W. Feldman & Kenichi Aoki & Jochen Kumm, 1996. "Individual Versus Social Learning: Evolutionary Analysis in a Fluctuating Environment," Working Papers 96-05-030, Santa Fe Institute.
    5. A. Whiten & J. Goodall & W. C. McGrew & T. Nishida & V. Reynolds & Y. Sugiyama & C. E. G. Tutin & R. W. Wrangham & C. Boesch, 1999. "Cultures in chimpanzees," Nature, Nature, vol. 399(6737), pages 682-685, June.
    6. Kobayashi, Yutaka & Ohtsuki, Hisashi, 2014. "Evolution of social versus individual learning in a subdivided population revisited: Comparative analysis of three coexistence mechanisms using the inclusive-fitness method," Theoretical Population Biology, Elsevier, vol. 92(C), pages 78-87.
    7. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    8. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    9. Kobayashi, Yutaka & Aoki, Kenichi, 2012. "Innovativeness, population size and cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 82(1), pages 38-47.
    10. Aoki, Kenichi & Wakano, Joe Yuichiro & Lehmann, Laurent, 2012. "Evolutionarily stable learning schedules and cumulative culture in discrete generation models," Theoretical Population Biology, Elsevier, vol. 81(4), pages 300-309.
    11. Aoki, Kenichi & Nakahashi, Wataru, 2008. "Evolution of learning in subdivided populations that occupy environmentally heterogeneous sites," Theoretical Population Biology, Elsevier, vol. 74(4), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ram, Yoav & Liberman, Uri & Feldman, Marcus W., 2019. "Vertical and oblique cultural transmission fluctuating in time and in space," Theoretical Population Biology, Elsevier, vol. 125(C), pages 11-19.
    2. Mullon, Charles & Lehmann, Laurent, 2017. "Invasion fitness for gene–culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission," Theoretical Population Biology, Elsevier, vol. 116(C), pages 33-46.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mullon, Charles & Lehmann, Laurent, 2017. "Invasion fitness for gene–culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission," Theoretical Population Biology, Elsevier, vol. 116(C), pages 33-46.
    2. Aoki, Kenichi, 2015. "Modeling abrupt cultural regime shifts during the Palaeolithic and Stone Age," Theoretical Population Biology, Elsevier, vol. 100(C), pages 6-12.
    3. Ram, Yoav & Liberman, Uri & Feldman, Marcus W., 2019. "Vertical and oblique cultural transmission fluctuating in time and in space," Theoretical Population Biology, Elsevier, vol. 125(C), pages 11-19.
    4. Aoki, Kenichi & Feldman, Marcus W., 2014. "Evolution of learning strategies in temporally and spatially variable environments: A review of theory," Theoretical Population Biology, Elsevier, vol. 91(C), pages 3-19.
    5. Kobayashi, Yutaka & Ohtsuki, Hisashi, 2014. "Evolution of social versus individual learning in a subdivided population revisited: Comparative analysis of three coexistence mechanisms using the inclusive-fitness method," Theoretical Population Biology, Elsevier, vol. 92(C), pages 78-87.
    6. Nakahashi, Wataru, 2013. "Evolution of improvement and cumulative culture," Theoretical Population Biology, Elsevier, vol. 83(C), pages 30-38.
    7. Kobayashi, Yutaka & Ohtsuki, Hisashi & Wakano, Joe Y., 2016. "Population size vs. social connectedness — A gene-culture coevolutionary approach to cumulative cultural evolution," Theoretical Population Biology, Elsevier, vol. 111(C), pages 87-95.
    8. Kobayashi, Yutaka & Kurokawa, Shun & Ishii, Takuya & Wakano, Joe Yuichiro, 2021. "Time to extinction of a cultural trait in an overlapping generation model," Theoretical Population Biology, Elsevier, vol. 137(C), pages 32-45.
    9. Wakano, Joe Y. & Kawasaki, Kohkichi & Shigesada, Nanako & Aoki, Kenichi, 2011. "Coexistence of individual and social learners during range expansion," Theoretical Population Biology, Elsevier, vol. 80(2), pages 132-140.
    10. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    11. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    12. Wakano, Joe Yuichiro & Gilpin, William & Kadowaki, Seiji & Feldman, Marcus W. & Aoki, Kenichi, 2018. "Ecocultural range-expansion scenarios for the replacement or assimilation of Neanderthals by modern humans," Theoretical Population Biology, Elsevier, vol. 119(C), pages 3-14.
    13. Nakamura, Mitsuhiro & Wakano, Joe Yuichiro & Aoki, Kenichi & Kobayashi, Yutaka, 2020. "The popularity spectrum applied to a cross-cultural question," Theoretical Population Biology, Elsevier, vol. 133(C), pages 104-116.
    14. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    15. Xiaochen Wang & Lei Zhou & Alex McAvoy & Aming Li, 2023. "Imitation dynamics on networks with incomplete information," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    17. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    18. Alex McAvoy & Andrew Rao & Christoph Hauert, 2021. "Intriguing effects of selection intensity on the evolution of prosocial behaviors," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-21, November.
    19. Mahdi Hajihashemi & Keivan Aghababaei Samani, 2022. "Multi-strategy evolutionary games: A Markov chain approach," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-17, February.
    20. Nakahashi, Wataru, 2010. "Evolution of learning capacities and learning levels," Theoretical Population Biology, Elsevier, vol. 78(3), pages 211-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:115:y:2017:i:c:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.