IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v184y2022ics0040162522004966.html
   My bibliography  Save this article

A comprehensive bibliometric analysis and visualization of smart home research

Author

Listed:
  • Ohlan, Ramphul
  • Ohlan, Anshu

Abstract

The smart home penetration rate has grown considerably across the globe. This study presents a comprehensive bibliometric analysis of the trends and patterns in the general smart home research corpus using data from 5167 publications published in the Web of Science indexed sources over 2001–2021. The results show that the volume and impact of studies on smart homes have grown amazingly. Across multiple disciplines, at least 82 % of the research work in this set has been cited at least once. Additionally, China has emerged as a global leader in smart home research publications and influence. The USA has also made a considerable contribution to smart home scholarship. Most of the analyzed research publications are collaborative types. The scholars affiliated with China-based institutions have a close association with those from the USA, Australia, England, and Taiwan in the global network of smart home research papers. The Institute of Electrical and Electronics Engineers (IEEE) is identified as the leading publisher in this research field. The citation and usage count are found to be positively associated with each other. Intelligent sensors, wireless fidelity, load modeling, real-time systems, and computational modeling are identified as emerging knowledge domains in the field of smart homes.

Suggested Citation

  • Ohlan, Ramphul & Ohlan, Anshu, 2022. "A comprehensive bibliometric analysis and visualization of smart home research," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522004966
    DOI: 10.1016/j.techfore.2022.121975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522004966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi Sun & Shihui Li, 2021. "A systematic review of the research framework and evolution of smart homes based on the internet of things," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(3), pages 597-623, July.
    2. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    3. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    4. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    5. Wilson, Charlie & Hargreaves, Tom & Hauxwell-Baldwin, Richard, 2017. "Benefits and risks of smart home technologies," Energy Policy, Elsevier, vol. 103(C), pages 72-83.
    6. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. GhaffarianHoseini, AmirHosein & Dahlan, Nur Dalilah & Berardi, Umberto & GhaffarianHoseini, Ali & Makaremi, Nastaran, 2013. "The essence of future smart houses: From embedding ICT to adapting to sustainability principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 593-607.
    8. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Bergman, Noam & Makuch, Karen E., 2020. "Critically reviewing smart home technology applications and business models in Europe," Energy Policy, Elsevier, vol. 144(C).
    9. Raphael Iten & Joël Wagner & Angela Zeier Röschmann, 2021. "On the Identification, Evaluation and Treatment of Risks in Smart Homes: A Systematic Literature Review," Risks, MDPI, vol. 9(6), pages 1-30, June.
    10. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    2. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    3. Furszyfer Del Rio, D.D., 2022. "Smart but unfriendly: Connected home products as enablers of conflict," Technology in Society, Elsevier, vol. 68(C).
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Daniel J. Mallinson & Saahir Shafi, 2022. "Smart home technology: Challenges and opportunities for collaborative governance and policy research," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 330-352, May.
    6. Raphael Iten & Joël Wagner & Angela Zeier Röschmann, 2021. "On the Identification, Evaluation and Treatment of Risks in Smart Homes: A Systematic Literature Review," Risks, MDPI, vol. 9(6), pages 1-30, June.
    7. Li, Wenda & Yigitcanlar, Tan & Liu, Aaron & Erol, Isil, 2022. "Mapping two decades of smart home research: A systematic scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    8. Elena Korneeva & Nina Olinder & Wadim Strielkowski, 2021. "Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT)," Energies, MDPI, vol. 14(23), pages 1-15, November.
    9. Wadim Strielkowski & Olga Kovaleva & Tatiana Efimtseva, 2022. "Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    10. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    13. Rohde, Friederike & Quitzow, Leslie, 2021. "Digitale Energiezukünfte und ihre Wirkungsmacht: Visionen der smarten Energieversorgung zwischen Technikoptimismus und Nachhaltigkeit," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 189-211.
    14. Su-Yen Chen & Chiachun Lee, 2019. "Perceptions of the Impact of High-Level-Machine-Intelligence from University Students in Taiwan: The Case for Human Professions, Autonomous Vehicles, and Smart Homes," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    15. Birgul Basarir-Ozel & Hande Bahar Turker & Vesile Aslihan Nasir, 2022. "Identifying the Key Drivers and Barriers of Smart Home Adoption: A Thematic Analysis from the Business Perspective," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    16. Attié, Elodie & Meyer-Waarden, Lars, 2022. "The acceptance and usage of smart connected objects according to adoption stages: an enhanced technology acceptance model integrating the diffusion of innovation, uses and gratification and privacy ca," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    17. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    18. Pal, Debajyoti & Zhang, Xiangmin & Siyal, Saeed, 2021. "Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach," Technology in Society, Elsevier, vol. 66(C).
    19. Wei Gu & Peng Bao & Wenyuan Hao & Jaewoong Kim, 2019. "Empirical Examination of Intention to Continue to Use Smart Home Services," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    20. Mehmet Efe Biresselioglu & Muhittin Hakan Demir & Sebnem Altinci, 2022. "Understanding the Citizen’s Role in the Transition to a Smart Energy System: Are We Ready?," Sustainability, MDPI, vol. 14(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522004966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.