IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i13p1846-1850.html
   My bibliography  Save this article

Marginal distribution of some path-dependent stochastic volatility model

Author

Listed:
  • Sekine, Jun

Abstract

A Hobson-Rogers [Hobson, D.G., Rogers, L.C.G. 1998. Complete models with stochastic volatility. Math. Finance 8 (1) 27-48] type "path-dependent" stochastic volatility model is solved explicitly, and the Laplace transform of its marginal distribution is computed in a closed form.

Suggested Citation

  • Sekine, Jun, 2008. "Marginal distribution of some path-dependent stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1846-1850, September.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1846-1850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00049-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
    2. Paolo Foschi & Andrea Pascucci, 2008. "Path dependent volatility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 13-32, May.
    3. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Andrea Pascucci & Paolo Foschi, 2005. "Calibration of the Hobson&Rogers model: empirical tests," Finance 0509020, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Rosestolato & Tiziano Vargiolu & Giovanna Villani, 2013. "Robustness for path-dependent volatility models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 137-167, November.
    2. Foschi, Paolo & Pascucci, Andrea, 2009. "Calibration of a path-dependent volatility model: Empirical tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2219-2235, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Foschi & Andrea Pascucci, 2008. "Path dependent volatility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 13-32, May.
    2. Foschi, Paolo & Pascucci, Andrea, 2009. "Calibration of a path-dependent volatility model: Empirical tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2219-2235, April.
    3. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    4. Cristina Costantini & Marco Papi & Fernanda D’Ippoliti, 2012. "Singular risk-neutral valuation equations," Finance and Stochastics, Springer, vol. 16(2), pages 249-274, April.
    5. Mauro Rosestolato & Tiziano Vargiolu & Giovanna Villani, 2013. "Robustness for path-dependent volatility models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 137-167, November.
    6. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    7. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    9. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    10. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    11. Andrea Pascucci & Paolo Foschi, 2005. "Calibration of the Hobson&Rogers model: empirical tests," Finance 0509020, University Library of Munich, Germany.
    12. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    13. Marcel Nutz & Andr'es Riveros Valdevenito, 2023. "On the Guyon-Lekeufack Volatility Model," Papers 2307.01319, arXiv.org.
    14. Sotirios Sabanis, 2012. "A class of stochastic volatility models and the q -optimal martingale measure," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1111-1117, February.
    15. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    16. Lakshithe Wagalath, 2016. "Feedback effects and endogenous risk in financial markets," Finance, Presses universitaires de Grenoble, vol. 37(2), pages 39-74.
    17. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    18. Andrea Pascucci, 2008. "Free boundary and optimal stopping problems for American Asian options," Finance and Stochastics, Springer, vol. 12(1), pages 21-41, January.
    19. Pagliarani, S. & Pascucci, A. & Pignotti, M., 2017. "Intrinsic expansions for averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2560-2585.
    20. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 81(Dec), pages 21-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:13:p:1846-1850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.