Advanced Search
MyIDEAS: Login to save this article or follow this journal

Hausdorff moment problem: Reconstruction of distributions


Author Info

  • Mnatsakanov, Robert M.
Registered author(s):


    The problem of approximation of the moment-determinate cumulative distribution function (cdf) from its moments is studied. This method of recovering an unknown distribution is natural in certain incomplete models like multiplicative-censoring or biased sampling when the moments of unobserved distributions are related in a simple way to the moments of an observed distribution. In this article some properties of the proposed construction are derived. The uniform and L1-rates of convergence of the approximated cdf to the target distribution are obtained.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 78 (2008)
    Issue (Month): 12 (September)
    Pages: 1612-1618

    as in new window
    Handle: RePEc:eee:stapro:v:78:y:2008:i:12:p:1612-1618

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Hausdorff moment problem Moment-recovered distribution L1-rate of approximation Uniform rate of approximation;

    Find related papers by JEL classification:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Bruce Lindsay & Ramani Pilla & Prasanta Basak, 2000. "Moment-Based Approximations of Distributions Using Mixtures: Theory and Applications," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(2), pages 215-230, June.
    2. Gwo Dong Lin, 1997. "On the moment problems," Statistics & Probability Letters, Elsevier, vol. 35(1), pages 85-90, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Mnatsakanov, Robert & Sarkisian, Khachatur, 2012. "Varying kernel density estimation on R+," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1337-1345.
    2. Mnatsakanov, Robert M., 2011. "Moment-recovered approximations of multivariate distributions: The Laplace transform inversion," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 1-7, January.
    3. Gzyl, Henryk & Novi-Inverardi, Pier-Luigi & Tagliani, Aldo, 2013. "Determination of the probability of ultimate ruin by maximum entropy applied to fractional moments," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 457-463.
    4. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of probability density functions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1869-1877, September.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:12:p:1612-1618. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.