IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v195y2023ics016771522300010x.html
   My bibliography  Save this article

Hitting times, number of jumps, and occupation times for continuous-time finite state Markov chains

Author

Listed:
  • Colwell, David B.

Abstract

In this paper we discuss three random variables associated with a finite state continuous-time Markov chain having a constant transition rate matrix: the number of jumps between two different states, the amount of time spent in a given state, known as an occupation time, and the time it takes for the Markov chain to first reach a particular state, known as a hitting time or first passage time. First, we calculate expected values for each of these random variables. We then derive the moment generating functions for these variables. Our approach is to use the vector/matrix representations of the various processes. Each solution is written in terms of an integral of the exponential of a matrix.

Suggested Citation

  • Colwell, David B., 2023. "Hitting times, number of jumps, and occupation times for continuous-time finite state Markov chains," Statistics & Probability Letters, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:stapro:v:195:y:2023:i:c:s016771522300010x
    DOI: 10.1016/j.spl.2023.109786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522300010X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Shen & Kun Fan & Tak Kuen Siu, 2014. "Option Valuation Under a Double Regime‐Switching Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(5), pages 451-478, May.
    2. Donatien Hainaut & David B. Colwell, 2016. "A structural model for credit risk with switching processes and synchronous jumps," The European Journal of Finance, Taylor & Francis Journals, vol. 22(11), pages 1040-1062, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    2. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    3. Donatien Hainaut & Griselda Deelstra, 2019. "A Bivariate Mutually-Excited Switching Jump Diffusion (BMESJD) for Asset Prices," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1337-1375, December.
    4. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    5. Jung Ho Park & Kwangsoo Shin, 2018. "R&D Project Valuation Considering Changes of Economic Environment: A Case of a Pharmaceutical R&D Project," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    6. Mehrdoust, Farshid & Noorani, Idin & Kanniainen, Juho, 2024. "Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 228-269.
    7. Hainaut, Donatien, 2019. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2019027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Zeitsch, Peter J., 2019. "A jump model for credit default swaps with hierarchical clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 737-775.
    9. Charles Guy Njike Leunga & Donatien Hainaut, 2022. "Valuation of Annuity Guarantees Under a Self-Exciting Switching Jump Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 963-990, June.
    10. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    11. Wenlong Hu, 2020. "Risk management of guaranteed minimum maturity benefits under stochastic mortality and regime-switching by Fourier space time-stepping framework," Papers 2006.15483, arXiv.org, revised Dec 2020.
    12. Chen Tong & Peter Reinhard Hansen & Zhuo Huang, 2022. "Option pricing with state‐dependent pricing kernel," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1409-1433, August.
    13. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Pricing annuity guarantees under a double regime-switching model," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 62-78.
    14. Hainaut, Donatien & Deelstra, Griselda, 2018. "A Bivariate Mutually-Excited Switching Jump Diffusion (BMESJD) for asset prices," LIDAM Discussion Papers ISBA 2018011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Hainaut, Donatien, 2020. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2020002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.
    17. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Valuing commodity options and futures options with changing economic conditions," Economic Modelling, Elsevier, vol. 51(C), pages 524-533.
    18. Siu, Tak Kuen, 2016. "A self-exciting threshold jump–diffusion model for option valuation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 168-193.
    19. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:195:y:2023:i:c:s016771522300010x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.