IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v152y2019icp1-8.html
   My bibliography  Save this article

On a flexible construction of a negative binomial model

Author

Listed:
  • Leisen, Fabrizio
  • Mena, Ramsés H.
  • Palma, Freddy
  • Rossini, Luca

Abstract

This work presents a construction of stationary Markov models with negative-binomial marginal distributions. A simple closed form expression for the corresponding transition probabilities is given, linking the proposal to well-known classes of birth and death processes and thus revealing interesting characterizations. The advantage of having such closed form expressions is tested on simulated and real data.

Suggested Citation

  • Leisen, Fabrizio & Mena, Ramsés H. & Palma, Freddy & Rossini, Luca, 2019. "On a flexible construction of a negative binomial model," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 1-8.
  • Handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:1-8
    DOI: 10.1016/j.spl.2019.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219301075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramses H. Mena & Stephen G. Walker, 2009. "On a Construction of Markov Models in Continuous Time," ICER Working Papers - Applied Mathematics Series 25-2009, ICER - International Centre for Economic Research.
    2. Ramses H. Mena & Stephen G. Walker, 2009. "On a construction of Markov models in continuous time," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 303-323.
    3. Ramsés H. Mena & Stephen G. Walker, 2005. "Stationary Autoregressive Models via a Bayesian Nonparametric Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 789-805, November.
    4. Michelle Anzarut & Ramsés H. Mena & Consuelo R. Nava & Igor Prünster, 2018. "Poisson-Driven Stationary Markov Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 684-694, October.
    5. Alain Latour, 1998. "Existence and Stochastic Structure of a Non‐negative Integer‐valued Autoregressive Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 439-455, July.
    6. Paolo Gorgi, 2018. "Integer†Valued Autoregressive Models With Survival Probability Driven By A Stochastic Recurrence Equation," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 150-171, March.
    7. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    8. Michael K. Pitt & Chris Chatfield & Stephen G. Walker, 2002. "Constructing First Order Stationary Autoregressive Models via Latent Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 657-663, December.
    9. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    10. Pitt, Michael K. & Walker, Stephen G., 2005. "Constructing Stationary Time Series Models Using Auxiliary Variables With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 554-564, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    2. Martínez-Ovando Juan Carlos & Walker Stephen G., 2011. "Time-series Modelling, Stationarity and Bayesian Nonparametric Methods," Working Papers 2011-08, Banco de México.
    3. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    4. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    5. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    6. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    7. Drost, Feike C. & van den Akker, Ramon & Werker, Bas J.M., 2008. "Note on integer-valued bilinear time series models," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 992-996, June.
    8. Isabel Silva & M. Eduarda Silva & Isabel Pereira & Nélia Silva, 2005. "Replicated INAR(1) Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(4), pages 517-542, December.
    9. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
    10. Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.
    11. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    12. Pitt, Michael K. & Walker, Stephen G., 2006. "Extended constructions of stationary autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1219-1224, July.
    13. Dani Gamerman & Thiago Rezende Santos & Glaura C. Franco, 2013. "A Non-Gaussian Family Of State-Space Models With Exact Marginal Likelihood," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 625-645, November.
    14. Vladica S. Stojanović & Hassan S. Bakouch & Eugen Ljajko & Najla Qarmalah, 2023. "Zero-and-One Integer-Valued AR(1) Time Series with Power Series Innovations and Probability Generating Function Estimation Approach," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    15. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    16. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
    17. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
    18. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    19. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    20. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.