IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v105y2015icp130-135.html
   My bibliography  Save this article

Exact confidence intervals in the presence of interference

Author

Listed:
  • Rigdon, Joseph
  • Hudgens, Michael G.

Abstract

For two-stage randomized experiments assuming partial interference, exact confidence intervals are proposed for treatment effects on a binary outcome. Empirical studies demonstrate the new intervals have narrower width than previously proposed exact intervals based on the Hoeffding inequality.

Suggested Citation

  • Rigdon, Joseph & Hudgens, Michael G., 2015. "Exact confidence intervals in the presence of interference," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 130-135.
  • Handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:130-135
    DOI: 10.1016/j.spl.2015.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215001972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Betsy Sinclair & Margaret McConnell & Donald P. Green, 2012. "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments," American Journal of Political Science, John Wiley & Sons, vol. 56(4), pages 1055-1069, October.
    2. Hong, Guanglei & Raudenbush, Stephen W., 2006. "Evaluating Kindergarten Retention Policy: A Case Study of Causal Inference for Multilevel Observational Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 901-910, September.
    3. Esther Duflo & Emmanuel Saez, 2003. "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 815-842.
    4. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    5. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    6. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    7. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03455978, HAL.
    2. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    3. Karlsson, Maria & Lundin, Mathias, 2016. "On statistical methods for labor market evaluation under interference between units," Working Paper Series 2016:24, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    4. Jizhou Liu, 2023. "Inference for Two-stage Experiments under Covariate-Adaptive Randomization," Papers 2301.09016, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    2. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    3. Chiba, Yasutaka, 2012. "A note on bounds for the causal infectiousness effect in vaccine trials," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1422-1429.
    4. Kosuke Imai & Zhichao Jiang, 2020. "Identification and sensitivity analysis of contagion effects in randomized placebo‐controlled trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1637-1657, October.
    5. Clarke, Damian, 2017. "Estimating Difference-in-Differences in the Presence of Spillovers," MPRA Paper 81604, University Library of Munich, Germany.
    6. Arpino, Bruno & Mattei, Alessandra, 2013. "Assessing the Impact of Financial Aids to Firms: Causal Inference in the presence of Interference," MPRA Paper 51795, University Library of Munich, Germany.
    7. Zhichao Jiang & Kosuke Imai & Anup Malani, 2023. "Statistical inference and power analysis for direct and spillover effects in two‐stage randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 2370-2381, September.
    8. VanderWeele Tyler J. & Hernan Miguel A., 2013. "Causal inference under multiple versions of treatment," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 1-20, June.
    9. Sarah Baird & Aislinn Bohren & Craig McIntosh & Berk Ozler, 2017. "Optimal Design of Experiments in the Presence of Interference*, Second Version," PIER Working Paper Archive 16-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 30 Nov 2017.
    10. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    11. VanderWeele, Tyler J. & Tchetgen Tchetgen, Eric J., 2011. "Effect partitioning under interference in two-stage randomized vaccine trials," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 861-869, July.
    12. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    13. C. Tort`u & I. Crimaldi & F. Mealli & L. Forastiere, 2020. "Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates," Papers 2003.10525, arXiv.org, revised Jun 2020.
    14. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    15. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    16. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    17. Sourafel Girma & Yundan Gong & Holger Görg & Sandra Lancheros, 2016. "Estimating direct and indirect effects of foreign direct investment on firm productivity in the presence of interactions between firms," World Scientific Book Chapters, in: MULTINATIONAL ENTERPRISES AND HOST COUNTRY DEVELOPMENT, chapter 12, pages 227-239, World Scientific Publishing Co. Pte. Ltd..
    18. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Efficient Treatment Effect Estimation in Observational Studies under Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2022.
    19. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    20. Sarah Baird & Aislinn Bohren & Berk Ozler & Craig McIntosh, 2014. "Designing Experiments to Measure Spillover Effects," Working Papers 2014-11, The George Washington University, Institute for International Economic Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:130-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.