IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v158y2023icp418-452.html
   My bibliography  Save this article

Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend

Author

Listed:
  • Ji, Lanpeng
  • Peng, Xiaofan

Abstract

We investigate extreme value theory of a class of random sequences defined by the all-time suprema of aggregated self-similar Gaussian processes with trend. This study is motivated by its potential applications in various areas and its theoretical interestingness. We consider both stationary sequences and non-stationary sequences obtained by considering whether the trend functions are identical or not. We show that a sequence of suitably normalised kth order statistics converges in distribution to a limiting random variable which can be a negative log transformed Erlang distributed random variable, a Normal random variable or a mixture of them, according to three conditions deduced through the model parameters. Remarkably, this phenomenon resembles that for the stationary Normal sequence. We also show that various moments of the normalised kth order statistics converge to the moments of the corresponding limiting random variable. The obtained results enable us to analyse various properties of these random sequences, which reveals the interesting particularities of this class of random sequences in extreme value theory.

Suggested Citation

  • Ji, Lanpeng & Peng, Xiaofan, 2023. "Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 418-452.
  • Handle: RePEc:eee:spapps:v:158:y:2023:i:c:p:418-452
    DOI: 10.1016/j.spa.2023.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923000224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, J. & Piterbarg, V., 1999. "Extremes of a certain class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 257-271, October.
    2. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.
    3. Dieker, A.B., 2005. "Extremes of Gaussian processes over an infinite horizon," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 207-248, February.
    4. Hsing, Tailen, 1988. "On the extreme order statistics for a stationary sequence," Stochastic Processes and their Applications, Elsevier, vol. 29(1), pages 155-169.
    5. Armengol Gasull & José López-Salcedo & Frederic Utzet, 2015. "Maxima of Gamma random variables and other Weibull-like distributions and the Lambert $$\varvec{W}$$ W function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 714-733, December.
    6. Debicki, K. & Kosinski, K.M. & Mandjes, M. & Rolski, T., 2010. "Extremes of multidimensional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2289-2301, December.
    7. Krzysztof Dȩbicki & Enkelejd Hashorva, 2020. "Approximation of Supremum of Max-Stable Stationary Processes & Pickands Constants," Journal of Theoretical Probability, Springer, vol. 33(1), pages 444-464, March.
    8. Hösler, Jörg & Piterbarg, Vladimir & Rumyantseva, Ekaterina, 2011. "Extremes of Gaussian processes with a smooth random variance," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2592-2605, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Long & Luo, Li, 2017. "Parisian ruin of the Brownian motion risk model with constant force of interest," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 34-44.
    2. Krzysztof Dȩbicki & Peng Liu & Zbigniew Michna, 2020. "Sojourn Times of Gaussian Processes with Trend," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2119-2166, December.
    3. Hüsler, Jürg & Zhang, Yueming, 2008. "On first and last ruin times of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1230-1235, August.
    4. Blanchet, Jose & Lam, Henry, 2013. "A heavy traffic approach to modeling large life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 237-251.
    5. Pingjin Deng, 2018. "The Joint Distribution of Running Maximum of a Slepian Process," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1123-1135, December.
    6. Debicki, K. & Kosinski, K.M. & Mandjes, M. & Rolski, T., 2010. "Extremes of multidimensional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2289-2301, December.
    7. Krzysztof Dȩbicki, 2022. "Exact asymptotics of Gaussian-driven tandem queues," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 285-287, April.
    8. Bai, Long, 2020. "Extremes of standard multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 159(C).
    9. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Wang, Longmin, 2020. "Extremes of vector-valued Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5802-5837.
    10. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Ji, Lanpeng & Tabiś, Kamil, 2015. "Extremes of vector-valued Gaussian processes: Exact asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4039-4065.
    11. Krzysztof Bisewski & Krzysztof Dȩbicki & Tomasz Rolski, 2022. "Derivative of the expected supremum of fractional Brownian motion at $$H=1$$ H = 1," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 53-68, October.
    12. De[combining cedilla]bicki, Krzysztof & Kisowski, Pawel, 2008. "Asymptotics of supremum distribution of [alpha](t)-locally stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2022-2037, November.
    13. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.
    14. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Ji, Lanpeng & Rolski, Tomasz, 2018. "Extremal behavior of hitting a cone by correlated Brownian motion with drift," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4171-4206.
    15. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    16. Cheng, Dan, 2016. "Excursion probability of certain non-centered smooth Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 883-905.
    17. Hüsler, J. & Piterbarg, V., 2004. "On the ruin probability for physical fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 315-332, October.
    18. Enkelejd Hashorva & Jürg Hüsler, 2000. "Extremes of Gaussian Processes with Maximal Variance near the Boundary Points," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 255-269, September.
    19. Zailei Cheng & Youngsoo Seol, 2018. "Gaussian Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Papers 1801.07595, arXiv.org, revised Aug 2019.
    20. Luísa Pereira, 2018. "On the Asymptotic Locations of the Largest and Smallest Extremes of a Stationary Sequence," Journal of Theoretical Probability, Springer, vol. 31(2), pages 853-866, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:158:y:2023:i:c:p:418-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.