IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v150y2022icp510-531.html
   My bibliography  Save this article

Asymptotic behaviour of ancestral lineages in subcritical continuous-state branching populations

Author

Listed:
  • Foucart, Clément
  • Möhle, Martin

Abstract

Consider the population model with infinite size associated to subcritical continuous-state branching processes (CSBP). We study the flow of ancestral lineages as time goes to the past and show that, properly renormalized, it converges almost surely to the inverse of a drift-free subordinator whose Laplace exponent is explicit in terms of the branching mechanism. The inverse subordinator is shown to be partitioning the current population into ancestral families with distinct common ancestors. When Grey’s condition is satisfied, the population comes from a discrete set of ancestors and the ancestral families have i.i.d. sizes distributed according to the quasi-stationary distribution of the CSBP conditioned on non-extinction. When Grey’s condition is not satisfied, the population comes from a continuum of ancestors which is described as the set of increase points S of the limiting inverse subordinator. The proof is based on a general result for stochastically monotone processes of independent interest, which relates θ-invariant measures and θ-invariant functions for a process and its Siegmund dual.

Suggested Citation

  • Foucart, Clément & Möhle, Martin, 2022. "Asymptotic behaviour of ancestral lineages in subcritical continuous-state branching populations," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 510-531.
  • Handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:510-531
    DOI: 10.1016/j.spa.2022.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922001090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cox, J. Theodore & Rösler, Uwe, 1984. "A duality relation for entrance and exit laws for Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 16(2), pages 141-156, February.
    2. Anthony G. Pakes, 2017. "Convergence Rates and Limit Theorems for the Dual Markov Branching Process," Journal of Probability and Statistics, Hindawi, vol. 2017, pages 1-13, March.
    3. Veillette, Mark & Taqqu, Murad S., 2010. "Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 697-705, April.
    4. Bingham, N. H., 1976. "Continuous branching processes and spectral positivity," Stochastic Processes and their Applications, Elsevier, vol. 4(3), pages 217-242, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duquesne, Thomas & Winkel, Matthias, 2019. "Hereditary tree growth and Lévy forests," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3690-3747.
    2. Holger Dette & James Allen Fill & Jim Pitman & William J. Studden, 1997. "Wall and Siegmund Duality Relations for Birth and Death Chains with Reflecting Barrier," Journal of Theoretical Probability, Springer, vol. 10(2), pages 349-374, April.
    3. Chi, Zhiyi, 2016. "On exact sampling of the first passage event of a Lévy process with infinite Lévy measure and bounded variation," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1124-1144.
    4. Duquesne, Thomas, 2009. "Continuum random trees and branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 99-129, January.
    5. Anja Sturm & Jan M. Swart, 2018. "Pathwise Duals of Monotone and Additive Markov Processes," Journal of Theoretical Probability, Springer, vol. 31(2), pages 932-983, June.
    6. Duquesne, Thomas, 2012. "The exact packing measure of Lévy trees," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 968-1002.
    7. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    8. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.
    9. Palau, S. & Pardo, J.C., 2017. "Continuous state branching processes in random environment: The Brownian case," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 957-994.
    10. Zenghu Li & Chunhua Ma, 2008. "Catalytic Discrete State Branching Models and Related Limit Theorems," Journal of Theoretical Probability, Springer, vol. 21(4), pages 936-965, December.
    11. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    12. Abraham, Romain & Delmas, Jean-François & He, Hui, 2021. "Some properties of stationary continuous state branching processes," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 309-343.
    13. Ascione, Giacomo & Leonenko, Nikolai & Pirozzi, Enrica, 2020. "Fractional Erlang queues," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3249-3276.
    14. Florin Avram & Andras Horváth & Serge Provost & Ulyses Solon, 2019. "On the Padé and Laguerre–Tricomi–Weeks Moments Based Approximations of the Scale Function W and of the Optimal Dividends Barrier for Spectrally Negative Lévy Risk Processes," Risks, MDPI, vol. 7(4), pages 1-24, December.
    15. K. K. Kataria & M. Khandakar, 2021. "On the Long-Range Dependence of Mixed Fractional Poisson Process," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1607-1622, September.
    16. Mijatović, Aleksandar & Vidmar, Matija & Jacka, Saul, 2015. "Markov chain approximations to scale functions of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3932-3957.
    17. Anthony G. Pakes, 2020. "Self-Decomposable Laws from Continuous Branching Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 361-395, March.
    18. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:150:y:2022:i:c:p:510-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.