IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i4p1083-1093.html
   My bibliography  Save this article

Fractal dimension results for continuous time random walks

Author

Listed:
  • Meerschaert, Mark M.
  • Nane, Erkan
  • Xiao, Yimin

Abstract

Continuous time random walks impose random waiting times between particle jumps. This paper computes the fractal dimensions of their process limits, which represent particle traces in anomalous diffusion.

Suggested Citation

  • Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1083-1093
    DOI: 10.1016/j.spl.2013.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213000023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2009. "Correlated continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1194-1202, May.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    4. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    5. Veillette, Mark & Taqqu, Murad S., 2010. "Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 697-705, April.
    6. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    7. Davydov, Yu., 2012. "On convex hull of d-dimensional fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 37-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asogwa, Sunday A. & Nane, Erkan, 2017. "Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1354-1374.
    2. Mijena, Jebessa B. & Nane, Erkan, 2015. "Space–time fractional stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3301-3326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    2. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    3. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    4. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    5. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    6. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    7. Cohen, Serge & Meerschaert, Mark M. & Rosinski, Jan, 2010. "Modeling and simulation with operator scaling," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2390-2411, December.
    8. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    9. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    10. Barczyk, A. & Kern, P., 2013. "Scaling limits of coupled continuous time random walks and residual order statistics through marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 796-812.
    11. Chen, Zhen-Qing, 2017. "Time fractional equations and probabilistic representation," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 168-174.
    12. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    13. Veillette, Mark & Taqqu, Murad S., 2010. "Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 697-705, April.
    14. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    15. Kumar, A. & Vellaisamy, P., 2015. "Inverse tempered stable subordinators," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 134-141.
    16. Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    17. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    18. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    19. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    20. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1083-1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.