IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v143y2022icp89-105.html
   My bibliography  Save this article

Randomized multivariate Central Limit Theorems for ergodic homogeneous random fields

Author

Listed:
  • Tempelman, Arkady

Abstract

We present new versions of the CLT which are valid for each ergodic homogeneous multivariate random field (X1(⋅),…,Xd(⋅)) on Rm or Zm(m≥1) (in particular, for each ergodic stationary random process and for each ergodic stationary random sequence) such that for all l E[|Xl(0)|2+δ]<∞ for some δ>0(l=1,...,d); in some statements ergodicity is not assumed. Randomization made it possible to significantly weaken the strong mixing conditions and other restrictions of dependence, that are imposed in the conventional CLTs. These results pave the way to consistent statistical inference for homogeneous random fields and stationary processes with strong dependence.

Suggested Citation

  • Tempelman, Arkady, 2022. "Randomized multivariate Central Limit Theorems for ergodic homogeneous random fields," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 89-105.
  • Handle: RePEc:eee:spapps:v:143:y:2022:i:c:p:89-105
    DOI: 10.1016/j.spa.2021.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921001691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    2. Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
    3. Volný, Dalibor & Wang, Yizao, 2014. "An invariance principle for stationary random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4012-4029.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peligrad, Magda & Zhang, Na, 2018. "On the normal approximation for random fields via martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1333-1346.
    2. Na Zhang & Lucas Reding & Magda Peligrad, 2020. "On the Quenched Central Limit Theorem for Stationary Random Fields Under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2351-2379, December.
    3. Lin, Han-Mai & Merlevède, Florence, 2022. "On the weak invariance principle for ortho-martingale in Banach spaces. Application to stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 198-220.
    4. Magda Peligrad & Dalibor Volný, 2020. "Quenched Invariance Principles for Orthomartingale-Like Sequences," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1238-1265, September.
    5. Klicnarová, Jana & Volný, Dalibor & Wang, Yizao, 2016. "Limit theorems for weighted Bernoulli random fields under Hannan’s condition," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1819-1838.
    6. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    7. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    10. Koch, Erwan & Dombry, Clément & Robert, Christian Y., 2019. "A central limit theorem for functions of stationary max-stable random fields on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3406-3430.
    11. Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    12. Michael C. Tseng, 2019. "A 2-Dimensional Functional Central Limit Theorem for Non-stationary Dependent Random Fields," Papers 1910.02577, arXiv.org.
    13. Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    14. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    15. Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
    16. Likai Chen & Weining Wang & Wei Biao Wu, 2017. "Dynamic Semiparametric Factor Model with a Common Break," SFB 649 Discussion Papers SFB649DP2017-026, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
    18. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
    19. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    20. Guy Cohen & Jean-Pierre Conze, 2017. "CLT for Random Walks of Commuting Endomorphisms on Compact Abelian Groups," Journal of Theoretical Probability, Springer, vol. 30(1), pages 143-195, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:143:y:2022:i:c:p:89-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.