IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i9p3406-3430.html
   My bibliography  Save this article

A central limit theorem for functions of stationary max-stable random fields on Rd

Author

Listed:
  • Koch, Erwan
  • Dombry, Clément
  • Robert, Christian Y.

Abstract

Max-stable random fields are very appropriate for the statistical modelling of spatial extremes. Hence, integrals of functions of max-stable random fields over a given region can play a key role in the assessment of the risk of natural disasters, meaning that it is relevant to improve our understanding of their probabilistic behaviour. For this purpose, in this paper, we propose a general central limit theorem for functions of stationary max-stable random fields on Rd. Then, we show that appropriate functions of the Brown–Resnick random field with a power variogram and of the Smith random field satisfy the central limit theorem. Another strong motivation for our work lies in the fact that central limit theorems for random fields on Rd have been barely considered in the literature. As an application, we briefly show the usefulness of our results in a risk assessment context.

Suggested Citation

  • Koch, Erwan & Dombry, Clément & Robert, Christian Y., 2019. "A central limit theorem for functions of stationary max-stable random fields on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3406-3430.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3406-3430
    DOI: 10.1016/j.spa.2018.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918305349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabluchko, Zakhar & Schlather, Martin, 2010. "Ergodic properties of max-infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 281-295, March.
    2. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    3. Dombry, Clément & Eyi-Minko, Frédéric, 2012. "Strong mixing properties of max-infinitely divisible random fields," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3790-3811.
    4. R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
    5. Evgeny Spodarev, 2014. "Limit Theorems for Excursion Sets of Stationary Random Fields," Springer Optimization and Its Applications, in: Volodymyr Korolyuk & Nikolaos Limnios & Yuliya Mishura & Lyudmyla Sakhno & Georgiy Shevchenko (ed.), Modern Stochastics and Applications, edition 127, pages 221-241, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    2. Erwan Koch, 2018. "Extremal dependence and spatial risk measures for insured losses due to extreme winds," Papers 1804.05694, arXiv.org, revised Dec 2019.
    3. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    4. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    5. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    7. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    8. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    9. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    10. Boris Beranger & Simone A. Padoan & Scott A. Sisson, 2017. "Models for Extremal Dependence Derived from Skew-symmetric Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 21-45, March.
    11. Erwan Koch, 2019. "Spatial Risk Measures and Rate of Spatial Diversification," Risks, MDPI, vol. 7(2), pages 1-26, May.
    12. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
    14. Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
    15. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
    16. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Krupskii, Pavel & Joe, Harry & Lee, David & Genton, Marc G., 2018. "Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler–Reiß distribution," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 80-95.
    18. Likai Chen & Weining Wang & Wei Biao Wu, 2017. "Dynamic Semiparametric Factor Model with a Common Break," SFB 649 Discussion Papers SFB649DP2017-026, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    19. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    20. Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:9:p:3406-3430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.