IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p2976-2991.html
   My bibliography  Save this article

PIV measurements in Francis turbine – A review and application to transient operations

Author

Listed:
  • Goyal, Rahul
  • Gandhi, B.K.
  • Cervantes, Michel J.

Abstract

Penetration of solar and wind energy into the grid network has raised the concern for grid stability which is generally balanced by operating the hydropower plants over a wide range. This results in several issues, such as rotor-stator interaction (RSI), vortex breakdown, rotating vortex rope (RVR), pressure shocks, vibration, and noise which may lead to failure. Particle Image Velocimetry (PIV) has been used to understand several physical mechanisms in the flow at various operating conditions. A non-negligible uncertainty may arise in the measurements due to calibration, abbreviation, and distortion of the light. Various parameters such as laser sheet thickness, particle type, particle size, particle density, camera resolution, image size and number of images may affect the quality of the measurements. In the present work, a review of PIV measurements performed in hydraulic turbines, mainly Francis, has been carried out. The objective is to develop an experimental set up to perform steady and transient measurements on a model Francis turbine. A maximum deviation of 1.8% in absolute velocity is estimated in the present study as compared to 2–3% reported in the previously performed measurements on Francis turbines. The repeatability of transient measurements is also investigated by extracting two velocity points on a PIV plane.

Suggested Citation

  • Goyal, Rahul & Gandhi, B.K. & Cervantes, Michel J., 2018. "PIV measurements in Francis turbine – A review and application to transient operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2976-2991.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2976-2991
    DOI: 10.1016/j.rser.2017.06.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211731047X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia, Damien, 2010. "Robust smoothing of gridded data in one and higher dimensions with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1167-1178, April.
    2. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sotoudeh, Nahale & Maddahian, Reza & Cervantes, Michel J., 2020. "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube," Renewable Energy, Elsevier, vol. 151(C), pages 238-254.
    2. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    3. Rafel Roig & Xavier Sánchez-Botello & Xavier Escaler & Berhanu Mulu & Carl-Maikel Högström, 2022. "On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model," Energies, MDPI, vol. 15(17), pages 1-19, August.
    4. Lai, Xide & Chen, Xiaoming & Liang, Quanwei & Ye, Daoxing & Gou, Qiuqin & Wang, Rongtao & Yan, Yi, 2023. "Experimental and numerical investigation of vortex flows and pressure fluctuations in a high-head pump-turbine," Renewable Energy, Elsevier, vol. 211(C), pages 236-247.
    5. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Yang, Zhiyan & Cheng, Yongguang & Xia, Linsheng & Meng, Wanwan & Liu, Ke & Zhang, Xiaoxi, 2020. "Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip," Renewable Energy, Elsevier, vol. 152(C), pages 1149-1159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2017. "The Internet as Quantitative Social Science Platform: Insights from a Trillion Observations," Papers 1701.05632, arXiv.org.
    2. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
    3. Alfredo Guardo & Alfred Fontanals & Mònica Egusquiza & Carme Valero & Eduard Egusquiza, 2021. "Characterization of the Effects of Ingested Bodies on the Rotor–Stator Interaction of Hydraulic Turbines," Energies, MDPI, vol. 14(20), pages 1-16, October.
    4. Chuanfa Chen & Yanyan Li & Na Zhao & Jinyun Guo & Guolin Liu, 2017. "A fast and robust interpolation filter for airborne lidar point clouds," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-20, May.
    5. Jinquan Ai & Chao Zhang & Lijuan Chen & Dajun Li, 2020. "Mapping Annual Land Use and Land Cover Changes in the Yangtze Estuary Region Using an Object-Based Classification Framework and Landsat Time Series Data," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    6. Felix Wellschmied, 2021. "The welfare effects of asset mean‐testing income support," Quantitative Economics, Econometric Society, vol. 12(1), pages 217-249, January.
    7. Klaus Ackermann & Simon D. Angus & Paul A. Raschky, 2020. "Estimating Sleep & Work Hours from Alternative Data by Segmented Functional Classification Analysis (SFCA)," Papers 2010.08102, arXiv.org.
    8. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    9. Adrien Méry & Artur Ruppel & Jean Revilloud & Martial Balland & Giovanni Cappello & Thomas Boudou, 2023. "Light-driven biological actuators to probe the rheology of 3D microtissues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Koirala, Ravi & Thapa, Bhola & Neopane, Hari Prasad & Zhu, Baoshan, 2017. "A review on flow and sediment erosion in guide vanes of Francis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1054-1065.
    11. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    12. Michael F Bonner & Russell A Epstein, 2018. "Computational mechanisms underlying cortical responses to the affordance properties of visual scenes," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-31, April.
    13. Zhu, Di & Tao, Ran & Xiao, Ruofu & Pan, Litan, 2020. "Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity," Renewable Energy, Elsevier, vol. 149(C), pages 298-320.
    14. Hiroshi Yamada, 2021. "Geary’s c and Spectral Graph Theory," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    15. Davide Pigoli & Pantelis Z. Hadjipantelis & John S. Coleman & John A. D. Aston, 2018. "The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1103-1145, November.
    16. Soza-Amigo, Sergio & Aroca, Patricio, 2015. "Identifying a Country As ¨Developed¨ Based On Their Structural Similarities," MPRA Paper 77421, University Library of Munich, Germany.
    17. Benjamin J. Davison & Anna E. Hogg & Richard Rigby & Sanne Veldhuijsen & Jan Melchior Wessem & Michiel R. Broeke & Paul R. Holland & Heather L. Selley & Pierre Dutrieux, 2023. "Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2018. "Flow measurements around guide vanes of Francis turbine: A PIV approach," Renewable Energy, Elsevier, vol. 126(C), pages 177-188.
    19. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2017. "Sediment erosion induced leakage flow from guide vane clearance gap in a low specific speed Francis turbine," Renewable Energy, Elsevier, vol. 107(C), pages 253-261.
    20. Md Rakibuzzaman & Hyoung-Ho Kim & Kyungwuk Kim & Sang-Ho Suh & Kyung Yup Kim, 2019. "Numerical Study of Sediment Erosion Analysis in Francis Turbine," Sustainability, MDPI, vol. 11(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2976-2991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.