IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i8p1139-1155.html
   My bibliography  Save this article

Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network

Author

Listed:
  • Kumar, Rakesh
  • Kaushik, S.C.
  • Garg, S.N.

Abstract

In this article, we use the concept of artificial neural network and goal oriented design to propose a computer design tool that can help the designer to evaluate any aspect of earth-to-air heat exchanger and behavior of the final configuration. The present study focuses mostly on those aspects related to the passive heating or cooling performance of the building. Two models have been developed for this purpose, namely deterministic and intelligent. The deterministic model is developed by analyzing simultaneously coupled heat and mass transfer in ground whereas the intelligent model is a development of data driven artificial neural network model. Six variables influencing the thermal performance of the earth-to-air heat exchangers which were taken into account are length, humidity, ambient air temperature, ground surface temperature, ground temperature at burial depth and air mass flow rate. Furthermore, a sensitivity analysis was carried out in order to evaluate the impact of various factors involved in the energy balance equation at the burial depth. The model was validated against experimental data sets. Moreover, the developed algorithm is suitable for the calculation of the outlet air temperature and therefore of the heating and cooling potential of the earth-to-air heat exchanger system. The Intelligent model predicts earth-to-air heat exchanger outlet air temperature with an accuracy of ±2.6%, whereas, the deterministic model shows an accuracy of ±5.3%.

Suggested Citation

  • Kumar, Rakesh & Kaushik, S.C. & Garg, S.N., 2006. "Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network," Renewable Energy, Elsevier, vol. 31(8), pages 1139-1155.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:8:p:1139-1155
    DOI: 10.1016/j.renene.2005.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105001709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    2. Bisoniya, Trilok Singh & Kumar, Anil & Baredar, Prashant, 2013. "Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 238-246.
    3. Andrew Zajch & William A. Gough & Giacomo Chiesa, 2020. "Earth–Air Heat Exchanger Geo-Climatic Suitability for Projected Climate Change Scenarios in the Americas," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    4. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    5. Rodrigues, Michel Kepes & Vaz, Joaquim & Oliveira Rocha, Luiz Alberto & Domingues dos Santos, Elizaldo & Isoldi, Liércio André, 2022. "A full approach to Earth-Air Heat Exchanger employing computational modeling, performance analysis and geometric evaluation," Renewable Energy, Elsevier, vol. 191(C), pages 535-556.
    6. Benhammou, Mohammed & Draoui, Belkacem, 2015. "Parametric study on thermal performance of earth-to-air heat exchanger used for cooling of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 348-355.
    7. Agrawal, Kamal Kumar & Misra, Rohit & Agrawal, Ghanshyam Das, 2020. "To study the effect of different parameters on the thermal performance of ground-air heat exchanger system: In situ measurement," Renewable Energy, Elsevier, vol. 146(C), pages 2070-2083.
    8. Tahery, Danial & Roshandel, Ramin & Avami, Akram, 2021. "An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration," Renewable Energy, Elsevier, vol. 173(C), pages 42-56.
    9. Maoz & Saddam Ali & Noor Muhammad & Ahmad Amin & Mohammad Sohaib & Abdul Basit & Tanvir Ahmad, 2019. "Parametric Optimization of Earth to Air Heat Exchanger Using Response Surface Method," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    10. Qinggong Liu & Zhenyu Du & Yi Fan, 2018. "Heat and Mass Transfer Behavior Prediction and Thermal Performance Analysis of Earth-to-Air Heat Exchanger by Finite Volume Method," Energies, MDPI, vol. 11(6), pages 1-19, June.
    11. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    12. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Kumar, Rakesh & Sinha, A.R. & Singh, B.K. & Modhukalya, U., 2008. "A design optimization tool of earth-to-air heat exchanger using a genetic algorithm," Renewable Energy, Elsevier, vol. 33(10), pages 2282-2288.
    14. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:8:p:1139-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.