IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124005251.html
   My bibliography  Save this article

Tidal turbine hydrofoil design and optimization based on deep learning

Author

Listed:
  • Li, Changming
  • Liu, Bin
  • Wang, Shujie
  • Yuan, Peng
  • Lang, Xianpeng
  • Tan, Junzhe
  • Si, Xiancai

Abstract

The optimal design of hydrofoils is critical to improve the hydrodynamic performance of the tidal turbine. However, the global optimization of hydrofoils is limited by the high dimensionality of the design space, which requires extensive computational fluid dynamics simulations. This paper proposes an interactive framework for hydrofoil design and optimization based on deep learning. Generative adversarial networks are used to parameterize the hydrofoil design, which automatically learns representations from existing hydrofoils and controls new hydrofoil generation using fewer variables to reduce optimization dimensions. Moreover, the surrogate model based on convolutional neural networks is constructed, which realizes the mapping of hydrofoil design and operating parameters to hydrodynamic performance parameters. The framework can generate a large number of smooth and realistic hydrofoils with three design variables and quickly predict the performance, enabling effective optimization design of hydrofoils. The results show that the optimized hydrofoil shapes have larger lift-to-drag ratios than those of the common hydrofoils. Furthermore, the optimized hydrofoil is applied to the design of 3D horizontal axis tidal turbine blades. The simulation results show that the framework is effective and stable, which can facilitate the design of tidal turbine rotors and provide hydrofoils with higher power coefficients.

Suggested Citation

  • Li, Changming & Liu, Bin & Wang, Shujie & Yuan, Peng & Lang, Xianpeng & Tan, Junzhe & Si, Xiancai, 2024. "Tidal turbine hydrofoil design and optimization based on deep learning," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005251
    DOI: 10.1016/j.renene.2024.120460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.