IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124005081.html
   My bibliography  Save this article

Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond

Author

Listed:
  • Tian, Yu
  • Ren, Guang-Kun
  • Wei, Zhijie
  • Zheng, Zhe
  • Deng, Shunjie
  • Ma, Li
  • Li, Yuansen
  • Zhou, Zhifang
  • Chen, Xiaohong
  • Shi, Yan
  • Lin, Yuan-Hua

Abstract

With the development of economy and changes in the diversity of human life, the fields of information technology, energy saving, emission reduction, Internet of things (IoTs), as well as wearable equipment upon generating energy portably have attracted wide attention in recent years. Integrated circuit (IC) products with high-performance, low energy consumption, and user-friendly performance are required, in which the power can be self-sufficiently generated. Among these applications, thermoelectric technology based on Seebeck effect has been effectively utilized for power generation, e.g., micro thermoelectric generators (μTEGs) with high integration and excellent compatibility virtues can be applied for medical and wearable equipment. Nevertheless, challenges like undesirable heat dissipation, small output power, low energy conversion efficiency, as well as incompatibility between thermoelectric modules and related electric loads, would limit further improvements. By optimizing thermoelectric materials and/or modifying terminal devices, amount of researches have been done to solving these problems. Here in this review, recent advances in low temperature used thermoelectric devices, consisting of constituents’ selection, fabrication details, and potential applications have been systematically discussed. In addition, comprehensive strategies different from any previous works, like thermal management structure design, interdisciplinary application scenarios, energy conversion efficiency enhancements through optimizing contact and ZT, as well as adaptive module structures for irregular flat or curved surface have also been proposed, for shedding more light on the approaching potential of thermoelectric technology.

Suggested Citation

  • Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005081
    DOI: 10.1016/j.renene.2024.120443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.