IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics096014812400507x.html
   My bibliography  Save this article

Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations

Author

Listed:
  • Zhang, Ji
  • Wu, Ding
  • Huang, Xiaohui
  • Hu, Xudong
  • Fang, Xi
  • Wen, Chuang

Abstract

Zeotropic mixture utilization enhances the performance of the Organic Rankine cycle (ORC) significantly. For geothermal ORC power plants, the zeotropic mixture flow boiling correlation plays a vital role in both evaporator design and system performance evaluation. Based on the screened zeotropic mixture R1224yd(Z)/R1234ze(E) (0.452/0.548), a comparative analysis of 4 flow boiling correlations is performed to assess their impact on both evaporator design and system performance under off-design conditions. The results underscore a substantial impact of these correlations on determining the plate length, with the largest relative difference being 53.8%, consequently resulting in uncertainties of 31.7% and 23.4% for the evaporator exergy loss and cost, respectively. Under off-design working conditions, the relative difference in net power output varies from 16.43% to 7.67%. The exergy efficiency variation is up to 11.82% and the electricity production cost (EPC) uncertainty is up to 11.2% at the working condition with the maximum difference in net output work. This study provides valuable insights for selecting the appropriate zeotropic mixture flow boiling correlation in practical evaporator design and evaluating the off-design performance of ORC systems.

Suggested Citation

  • Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s096014812400507x
    DOI: 10.1016/j.renene.2024.120442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400507X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s096014812400507x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.