IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004786.html
   My bibliography  Save this article

An experimental study of the thrust and power produced by a 1/20th scale tidal turbine utilising blade winglets

Author

Listed:
  • Olvera-Trejo, Rodolfo
  • Myers, Luke
  • Blunden, Luke
  • Bahaj, AbuBakr S.

Abstract

Winglets have been employed in the aviation industry to reduce vortices generated at aircraft wings, decreasing drag, and hence increasing fuel economy. For rotating applications previous experimental and numerical studies addressed the application for wind turbines and suggested winglets facing backwards on the suction side of a blade could increase the power capture. This paper presents experimental work using a scale 3-bladed horizontal axis tidal turbine. An oil-based paint flow visualisation coupled to blade thrust and torque measurements helped to identify the mechanism behind the phenomenon affecting the performance of winglets facing the suction side of a turbine blade. The results show that on average a winglet facing downstream decreases the power coefficient 1–2% and increases the thrust coefficient up to 6% for tip speed ratios 5.0–7.0. On the other hand, a symmetrically mirrored winglet facing upstream increased the power coefficient by 1–2%, and the thrust coefficient by 3–4%. Winglets have the potential to provide a meaningful increase to power capture at minimal additional capital cost without increasing rotor diameters. Further work to optimize pressure‐side winglets should be conducted.

Suggested Citation

  • Olvera-Trejo, Rodolfo & Myers, Luke & Blunden, Luke & Bahaj, AbuBakr S., 2024. "An experimental study of the thrust and power produced by a 1/20th scale tidal turbine utilising blade winglets," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004786
    DOI: 10.1016/j.renene.2024.120413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.