IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004762.html
   My bibliography  Save this article

Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells

Author

Listed:
  • Weng, Fang-Bor
  • Dlamini, Mangaliso Menzi
  • Tirumalasetti, Pandu Ranga
  • Hwang, Jenn-Jiang

Abstract

The promising nature of proton exchange membrane fuel cell stacks in energy conversion has sparked the need to improve the cell components for improved performance, durability, sustainability, and cost competitiveness. This work presents the pros and cons of different flow field designs concluded from an open-cathode short stack, composed of three cells. The flow fields consist of 3D fine mesh, fine wire mesh, metal foam, and conventional straight channels. The results presented in this study show that the fine wire mesh gives better performance, both when integrated, and not integrated with straight channels. It is followed by the 3D fine mesh, straight channels, and metal foam. The different performance improvements are caused by the various flow fields influencing flow rate, current conductivity, and temperature increment. Water management seems to be a significant factor in the performance variation. This is presented by the IV curves, which show a dramatic discrepancy over the concentration loss region. The straight channels integrated with fine wire mesh cell have the highest degradation rate at a constant voltage of 1.7 V, even though it reached a constant value after 1.4 h of operation.

Suggested Citation

  • Weng, Fang-Bor & Dlamini, Mangaliso Menzi & Tirumalasetti, Pandu Ranga & Hwang, Jenn-Jiang, 2024. "Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004762
    DOI: 10.1016/j.renene.2024.120411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.