IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004737.html
   My bibliography  Save this article

Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles

Author

Listed:
  • Chen, Yuxiang
  • Li, Chao
  • Zhang, Lijun
  • Zhang, Shu
  • Xiang, Jun
  • Hu, Song
  • Wang, Yi
  • Hu, Xun

Abstract

In pyrolysis of biomass via furnace heating, directions for travel of volatiles and heat flow are opposite. This is drastically different from simultaneously heating surface/inner core of a biomass particle with microwave heating. Changing direction of heat flow and volatiles affects volatiles-char interactions and evolution of pyrolytic products. This was investigated herein by pyrolysis of wet and dry pine needles via furnace or microwave heating at 600 °C. The results indicated that microwave heating induced intensive cracking of outer/inner structures of pine needles. This promoted gasification, decreased production of biochar/bio-oil, diminished formation of both light and heavy organics in bio-oil. Microwave heating also accelerated aromatization, forming biochar of higher C/O and C/H ratios and thermal stability. Additionally, formation of “hot spot” in pyrolysis of wet pine needles via microwave heating was evidenced by the phenomenon of decomposition of CaCO3 to CaO in pyrolysis, which also contributed to enhanced aromatic degree of biochar. Besides, pyrolysis of wet pine needles via microwave heating also generated developed pore structures in biochar (151.4 m2 g−1), as the inherent water and carbonaceous organics were heated simultaneously. Hydrogen bonding from inherent water was largely cracked only above 500 °C. Prolonged retention time of H2O reacted with carbonaceous intermediates, generating more aliphatic structures. Additionally, microwave heating also induced formation of unique morphology like massive thorn-like particulate matters on biochar.

Suggested Citation

  • Chen, Yuxiang & Li, Chao & Zhang, Lijun & Zhang, Shu & Xiang, Jun & Hu, Song & Wang, Yi & Hu, Xun, 2024. "Varied directions of heat flow and emission of volatiles impact evolution of products in pyrolysis of wet and dry pine needles," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004737
    DOI: 10.1016/j.renene.2024.120408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.