IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004622.html
   My bibliography  Save this article

Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications

Author

Listed:
  • Gai, Wei-Zhuo
  • Deng, Zhen-Yan

Abstract

Alongside the development of small-sized fuel cells, in situ hydrogen production technologies are essential to enable a compact, reliable and stable fuel supply. Among these technologies, Al-water reaction has tremendous potential and broad market prospect due to its low price, high gravimetric hydrogen storage density, environmentally benign byproducts and convenient storage and transportation. However, there is a passive oxide film on Al surface, hindering the direct reaction of Al with water, which has captured a surge of interest in enhancing the hydrogen production performance of Al-water reaction. In this review, the research progress in Al-water reaction is summarized. First, the physicochemical processes and related influencing factors of Al-water reaction are presented. Second, the strategies for enhancing Al-water reaction are critically discussed from five points of view: addition of alkalis, addition of catalysts, Al alloys, mechanical ball milling and surface modification. After that, the feasibility of hydrogen production from Al scraps is evaluated, and the potential applications of Al-water reaction are mapped. Finally, the challenges and opportunities of Al-hydrogen technology for fuel cell applications are outlined.

Suggested Citation

  • Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004622
    DOI: 10.1016/j.renene.2024.120397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.