IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004427.html
   My bibliography  Save this article

Exploiting the temporal characteristics of tidal stream power for green ammonia production

Author

Listed:
  • Driscoll, Honora
  • Salmon, Nicholas
  • Bañares-Alcántara, Rene

Abstract

Green ammonia, a promising zero-carbon energy storage vector, has never been produced using solely tidal stream energy despite its predictable characteristics. Combining tidal stream sites with a phase difference (tidal phasing) facilitates anticorrelation between these sites’ power profiles, enabling a more consistent power output. Green ammonia production benefits from a steady and predictable power input. The objective of this paper is to determine if nearby tidal sites have a large enough phase difference (anticorrelation) to reduce the cost of ammonia production. Moreover, producing green ammonia from underutilized or unutilized remote and grid-constrained tidal stream sites may enable viability of these sites. This paper is the first analysis of green ammonia production using solely tidal stream energy and the first analysis of tidal phasing for green fuel production. Two UK case studies are presented in i) the North Channel of the Irish Sea and ii) Orkney. There are tidal sites in each which have a phase difference (e.g. the Mull of Kintyre/Sound of Islay, and Graemsay/North Ronaldsay with correlation coefficients of 0.17 and −0.02 respectively), utilising this phase difference reduces the levelized cost of ammonia by 8% in the Irish Sea and by 12% in Orkney.

Suggested Citation

  • Driscoll, Honora & Salmon, Nicholas & Bañares-Alcántara, Rene, 2024. "Exploiting the temporal characteristics of tidal stream power for green ammonia production," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004427
    DOI: 10.1016/j.renene.2024.120377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.