IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004300.html
   My bibliography  Save this article

Investigation of the performance of a parabolic trough collector outfitted with annular absorber tubes

Author

Listed:
  • Abdala, Antar M.M.
  • Elwekeel, Fifi N.M.

Abstract

The current work recommends a novel absorber tube for parabolic trough solar collectors. Annular absorber tubes with and without spiral tape have been investigated as an alternative to conventional absorber tubes. This work employs numerical analysis through the usage of CFD code. The pitch ratio (P/D), width ratio (W/D), and height ratio (H/D) of the spiral tape are each different. Within the annular absorber tube, these ratios have an impact on the performance of heat transfers, pressure drop, and entropy generation. The results reveal that an annular absorber tube without spiral tape has a higher Nu ratio than a conventional absorber tube. In an annular absorber tube with P/D = 1.4, the Nusselt number increases. In an annular absorber tube, the spiral tape thickness ratio has no effect. The average Nu ratio is 24.5% greater at a height ratio of 0.3 than it would be in an annular absorber tube without spiral tape. The annular absorber tube's spiral tape's pitch ratio, thickness ratio, and height ratio all generate less total entropy than a conventional absorber tube does. The wall temperature of the absorber tube with the lowest spiral tape pitch ratio decreases, which results in a reduction in the thermal stress on the absorber wall. On the other hand, spiral tape and an annular absorber tube have a higher friction ratio. It exceeds the friction ratio of the annular absorber tube without spiral tape by 41.7 times.

Suggested Citation

  • Abdala, Antar M.M. & Elwekeel, Fifi N.M., 2024. "Investigation of the performance of a parabolic trough collector outfitted with annular absorber tubes," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004300
    DOI: 10.1016/j.renene.2024.120365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.