IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004257.html
   My bibliography  Save this article

A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation

Author

Listed:
  • Hou, Guolian
  • Wang, Junjie
  • Fan, Yuzhen
  • Zhang, Jianhua
  • Huang, Congzhi

Abstract

Wind power prediction holds significant importance for the stable operation of power systems and the enhancement of energy utilization efficiency. Interval prediction, capable of providing more uncertain information, has garnered widespread attention. In this study we have designed a hybrid prediction framework for both deterministic and interval prediction. Initially, the original wind power data undergo cleaning using the quartile method and the fuzzy C-means (FCM) clustering algorithm. This approach not only eliminates scattered outliers but also identifies concentrated outliers more effectively. Subsequently, five distinct single prediction models were employed for point predictions. The critic weight method was applied to yield point forecasting results with higher prediction accuracy. Nonparametric kernel density estimation (KDE) and normal distribution (ND) were incorporated to calculate the prediction interval (PI) under varying confidence levels. Finally, an improved northern goshawk optimization (INGO) algorithm was proposed, integrating three enhancement methods: levy flight, sinusoidal mapping, and a reverse learning strategy. This optimization aims to fine-tune the weight coefficients of the aforementioned two interval prediction methods. The resulting PI overcomes the limitations of a single-interval prediction model. To effectively demonstrate the forecasting performance of the proposed prediction framework, two datasets from a wind turbine in northwest China were selected for simulation verification. In deterministic prediction, the designed hybrid forecast model demonstrates a reduction in root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) by 8.5%, 16.98%, and 11.49%, respectively, compared to other single prediction models. In interval prediction, the prediction interval coverage probability (PICP) is enhanced, while the prediction interval normalized average width (PINAW) is effectively reduced. The designed interval prediction model can reduce the comprehensive evaluation index coverage width-based criterion (CWC) by 10.51%, 9.62%, and 12.95% on average at 95%, 90%, and 80% confidence levels, respectively. Simulation results verified the validity and feasibility of the proposed prediction framework.

Suggested Citation

  • Hou, Guolian & Wang, Junjie & Fan, Yuzhen & Zhang, Jianhua & Huang, Congzhi, 2024. "A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004257
    DOI: 10.1016/j.renene.2024.120360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.