IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124003987.html
   My bibliography  Save this article

Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom

Author

Listed:
  • Bao, Jian
  • Yu, Dingyong

Abstract

Aiming to design and develop an affordable integrated floating breakwater and wave energy converter (WEC) system that has high performance in power absorption and wave attenuation, a novel integrated floater with a half-airfoil bottom is proposed. The genetic algorithm combined with the boundary element method is employed to optimize the half-airfoil bottom surface represented by the class-shape function transformation parameterization method, for maximizing the power density over the operating bandwidth. Then the operating performance of the optimal half-airfoil bottom floater is further studied in a validated two-dimensional viscous numerical wave tank. The result shows that the optimal half-airfoil bottom floater is a more effective and affordable solution than square and triangular bottom ones. The effective ratio of the floater breadth to the wavelength can be reduced to about a tenth, far below that of the conventional floating breakwater, denoting its excellent wave attenuation capability. The increase in floater breadth induces more intense vortex dynamic behaviors and thus higher dissipation coefficient. A shallow front-wall draft design can improve the maximum conversion efficiency to more than 74%, slightly broaden the resonance bandwidth, and reduce energy dissipation while minimizing costs. The nonlinear PTO damping force contributes to a more stable response. The research results denote the feasibility of bio-inspired WEC-type floating breakwaters and show their superiority in energy extraction, wave attenuation, as well as cost reduction.

Suggested Citation

  • Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124003987
    DOI: 10.1016/j.renene.2024.120333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124003987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.