IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics096014812400154x.html
   My bibliography  Save this article

Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance

Author

Listed:
  • Li, Jing
  • Lu, Tianguang
  • Yi, Xinning
  • Hao, Ran
  • Ai, Qian
  • Guo, Yu
  • An, Molin
  • Wang, Shaorui
  • He, Xueqian
  • Li, Yixiao

Abstract

With the increasing proportion of variable renewable energy characterized by fluctuation and the promotion of the “Clean Heating” policy, the problem of seasonal energy imbalance of the system has become increasingly challenging. There is a lack of effective means to mitigate this challenge under the background of gradual compression of the construction space for traditional thermal units. Concentrated solar power (CSP) is a promising technology to replace thermal units by integrating emergency boilers to cope with extreme weather, and can meet long-time energy balance as a seasonal peak regulation source. In this paper, we propose a long-term high-resolution expansion planning model of energy systems integrating CSP to address seasonal energy imbalances. The model takes into account both investment and operation considerations in full hourly resolution for the whole year based on a fast cluster optimization method. With the projection to 2050, we take the energy system in Xinjiang province which is a typical area of the “Clean Heating” project with rich irradiance as a case study. It shows that the optimal deployment of CSP and electric boiler (EB) can result in a 8.73 % reduction in costs, a 19.72 % decrease in the peak-valley difference of net load, and a substantial 58.24 % reduction in renewable curtailment at 65 % renewable penetration compared to the base scenario.

Suggested Citation

  • Li, Jing & Lu, Tianguang & Yi, Xinning & Hao, Ran & Ai, Qian & Guo, Yu & An, Molin & Wang, Shaorui & He, Xueqian & Li, Yixiao, 2024. "Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s096014812400154x
    DOI: 10.1016/j.renene.2024.120089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400154X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s096014812400154x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.