IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148123016324.html
   My bibliography  Save this article

Comparative analysis of control strategies for solar photovoltaic/diesel power system for stand-alone applications

Author

Listed:
  • Amole, Abraham Olatide
  • Owosibo, Rachael Abiola
  • Adewuyi, Oludamilare Bode
  • Oladipo, Stephen
  • Imarhiagbe, Nosagiagbon Owomano

Abstract

Energy is one of the essential components for the social and economic growth of urban and rural communities worldwide. However, the lack of energy supply is one of the most significant challenges facing remote or local communities in Nigeria. Distributed generation systems based on renewable energy, conventional sources, or hybrid resources are possible energy production solutions for these communities. This paper, therefore, focused on providing an energy generation system based on photovoltaics (PV) and diesel generators (DG) for stand-alone applications. A comparative analysis was carried out to assess the impact of control strategies, namely load following (LF), cycle charging (CC), and combined dispatch (CD). The designed energy systems: 60 kW PV, 78.69 kW PV, PV-DG-LF, PV-DG-CC, and PV-DG-CD were simulated using HOMER Pro while technical, economic, and environmental indices were used as performance metrics. Simulation results showed that 60 kW PV generated 84,927 and 75,859 kWh, without and with temperature effect, respectively, with the corresponding unmet electric load (UEL) of 13.8 and 14.2%. The result further demonstrated that PV-DG-LF is the optimal design with the highest renewable penetration of 80.7% and the least annual total fuel consumption (TFC) of 6,594l. The economic results further confirm the suitability of PV-DG-LF with the lowest fuel cost (FC) and moderate cost of energy (COE) of $219,934 and 0.302 $/kWh, respectively. The PV-DG-LF is found to be more environmentally friendly, with the least annual CO2 emission of 16,629.652 kg. The study considers veritable strategies to achieve affordable, clean, and reliable energy in line with research efforts on realizing the sustainable development goal (SDG) 7.

Suggested Citation

  • Amole, Abraham Olatide & Owosibo, Rachael Abiola & Adewuyi, Oludamilare Bode & Oladipo, Stephen & Imarhiagbe, Nosagiagbon Owomano, 2024. "Comparative analysis of control strategies for solar photovoltaic/diesel power system for stand-alone applications," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148123016324
    DOI: 10.1016/j.renene.2023.119717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148123016324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.