IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003975.html
   My bibliography  Save this article

High-resolution spectral atmospheric attenuation measurement for solar power plants

Author

Listed:
  • Heras, Carlos
  • Salinas, Iñigo
  • Andres, Salvador
  • Sevilla, Marina
  • Villafranca, Asier
  • Martinez, David
  • Sanchez, Marcelino

Abstract

One of the main challenges in solar tower renewable technologies is measurement of solar radiation attenuation at the plants at surface level. This paper describes an improved version of the optical spectrum analysis method for measuring solar radiation attenuation in real time at solar tower plants, as presented in a previous work. The new hardware design and calibration process are explained in detail. This new system has a resolution of 0.25 nm in the VIS range and a precision of 0.5% in real time, improving over the state of the art for the measurement of spectral atmospheric attenuation. These specifications allow the assessment of the contribution of different attenuation factors at surface level, such as absorbance peaks (Na, H, H2O) or scattering and the search for correlation with different weather conditions. They also enable experimental validation of atmospheric extinction simulation methods and their parameters. This work also includes the results of a 6 month-long campaign of solar weighted atmospheric extinction measurements at Atlantica's operating central receiver solar plant PS10 at Sanlúcar la Mayor (Seville, Spain). Fluctuations in the daily averaged transmittance greater than 10% are observed, which shows the importance of monitoring this parameter during the operation of solar plants.

Suggested Citation

  • Heras, Carlos & Salinas, Iñigo & Andres, Salvador & Sevilla, Marina & Villafranca, Asier & Martinez, David & Sanchez, Marcelino, 2024. "High-resolution spectral atmospheric attenuation measurement for solar power plants," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003975
    DOI: 10.1016/j.renene.2024.120332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.