IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003963.html
   My bibliography  Save this article

Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers

Author

Listed:
  • Wang, Xueli
  • Zhang, Pengju
  • Du, Yan
  • Liu, Lang
  • Fang, Jiabin
  • Ji, Changfa
  • Wang, Mei
  • Zhang, Bo
  • Huan, Chao

Abstract

Cemented paste backfill mining technology that recycling tailings and waste rocks can effectively reduce heat damage. Heat pipe exchangers, demonstrating much higher thermal conductivity than water pipe exchangers, led to the development of a novel phase change backfill body system with a built-in casing heat pipe exchanger (HP-PCB). Numerical analysis revealed that, for the melt and solidification of a large amount of PCM, the temperature step phenomenon was observed at both heat storage and heat storage/heat release coexistence stages. Increased surrounding rock temperatures enhanced heat storage and heat release capacities, but reduced system energy efficiency. The optimal water flow velocity was identified at the laminar-turbulent transition flow rate, 0.32 m/s. An increase in water inlet temperature resulted in lower heat release capacity and system energy efficiency. The energy efficiency of the HP-PCB system exceeded that of the traditional water pipe-backfill system by 37.22%. At a surrounding rock temperature of 45 °C, cooling water velocity of 0.32 m/s, and a 6 °C inlet water temperature, the HP-PCB system achieved its highest energy efficiency coefficient, 86.38%. These findings highlight the HP-PCB system potential for efficient geothermal energy extraction in mine.

Suggested Citation

  • Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003963
    DOI: 10.1016/j.renene.2024.120331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.