IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003896.html
   My bibliography  Save this article

Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms

Author

Listed:
  • He, Ruiyang
  • Yang, Hongxing
  • Lu, Lin
  • Gao, Xiaoxia

Abstract

Wind energy plays a crucial role in the quest for sustainable energy solutions. However, optimizing the efficiency of wind energy utilization remains a significant challenge. Wake steering, a key strategy in the field, offers the potential to address this challenge. This study introduces an innovative site-specific wake steering framework that incorporates a wake superposition model for wake steering, a machine-learning based fatigue and power predictor and a multi-objective optimizer to both enhance total power generation and mitigate fatigue loads within wind farms. The wake superposition model, developed and validated here, successfully replicates secondary wake steering effects and provides a new solution for calculating superimposed transverse velocity. The study comprehensively considers and implements constraints based on physical laws. Analysis of inflow speed and turbulence levels reveals that wake steering can continue to enhance total power output. Power enhancement can reach up to 18% at lower turbulence levels and still achieve significant increases even when inflow speeds exceed rated values, with only marginal increases in fatigue loads. Lower turbulence levels improve optimization results at the expense of heightened structural loads, while higher turbulence levels lead to diminishing power enhancement and additional fatigue loads. Examination of wind turbine spacing shows that smaller intervals yield substantial power enhancement, with improvements of up to 51.7%, although the effect diminishes as intervals increase and wake recovery takes place. In conclusion, the proposed site-specific wake steering framework offers an efficient means of balancing enhanced wind farm power output and structural integrity, representing a significant advancement in wind energy optimization.

Suggested Citation

  • He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003896
    DOI: 10.1016/j.renene.2024.120324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.