IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003653.html
   My bibliography  Save this article

Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations

Author

Listed:
  • Tostado-Véliz, Marcos
  • Rezaee Jordehi, Ahmad
  • Zhou, Yuekuan
  • Mansouri, Seyed Amir
  • Jurado, Francisco

Abstract

The proliferation of charging stations entails multiple challenges for power systems. In this regard, the installation of photovoltaic-battery systems may help to mitigate the negative effects of charging points. However, such assets should be carefully planned, paying attention to economic aspects, principally. Most of existing works optimize the photovoltaic-battery system in charging infrastructures taking a representative-space of the involved variables (e.g. photovoltaic potential, charging demand or energy prices). However, this approach tends to ignore low-probable scenarios. Thus, the best-case scenario for charging demand (i.e. that for which the highest charging profit is accessible) may not be included in the analysis and therefore such demand could be not attended properly, thus losing this monetary opportunity. This paper focuses on this issue and questions if considering the best-case scenario into planning photovoltaic-battery systems for charging stations is worthwhile or not. To this end, a novel best-case-aware planning tool is developed, including the best-case scenario through a novel chance-constrained formulation. The overall problem is then decomposed into a master-slave structure by which the economy of the system is optimized together with the number of scenarios for which the best-case profile can be attended. A case study serves to validate the developed tool and shed light on the questions arisen in this work. In particular, it is checked that considering the best-case scenario into planning tools is questionable from a monetary point of view. Nevertheless, its inclusion unlocks some collateral advantages such as incrementing the users’ satisfaction or reducing the grid-dependency.

Suggested Citation

  • Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003653
    DOI: 10.1016/j.renene.2024.120300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.