IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003628.html
   My bibliography  Save this article

Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater

Author

Listed:
  • Didier, Eric
  • Teixeira, Paulo R.F.

Abstract

Performance and hydrodynamics of an array of Oscillating Water Column (OWC) Wave Energy Converter (WEC) integrated into a vertical breakwater is studied. The FLUENT® software, in which the numerical model is based on the Reynolds-Averaged Navier-Stokes equations and the Volume of Fluid method for free surface flow modeling, is used in a 3D numerical wave tank. Three vertical breakwater configurations subject to the action of incident regular waves with periods from 6 to 12 s are studied: normal breakwater, with vertical walls parallel to the direction along the breakwater length; and two novel breakwater geometries, partially and fully convergent breakwaters, whose converging vertical walls are inclined θ in relation to this direction. Different spacing S from 0 to 20 m between the array of OWC devices and two converging wall angles θ, 30 and 45°, are investigated. Firstly, analysis of the influence of S for the normal breakwater shows that the vertical wall concentrates naturally a higher quantity of the incident wave energy inside OWC chamber devices and, consequently, increases their efficiencies. This effect is intensified as the spacing S increases. Secondly, analyses of the partially and fully convergent breakwaters allow concluding that these novel geometries, which direct an amount of incident wave energy into the OWC chamber, increase significantly the efficiency of the array of the OWC devices at the range of the wave periods. The highest performance of OWC device is obtained by the fully convergent breakwater with S = 20 m and θ = 45°, once 10 OWC devices inserted in a breakwater 300 m long have the same efficiency of 20 OWC devices inserted into the normal breakwater.

Suggested Citation

  • Didier, Eric & Teixeira, Paulo R.F., 2024. "Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003628
    DOI: 10.1016/j.renene.2024.120297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.