IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003392.html
   My bibliography  Save this article

Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer

Author

Listed:
  • Atalay, Halil
  • Tunçkal, Cüneyt
  • Türkdoğan, Sunay
  • Direk, Mehmet

Abstract

In this study, the experimental performance of a commercial heat pump tumble dryer (HPTD) system integrated with photovoltaic (PV) was evaluated using energy and exergy analysis. Additionally, a sustainability and exergoeconomic performance analysis of system components was conducted to identify components in need of improvement. The energy consumption of the HPTD was recorded using a power quality analyzer and compared to the energy generated by the PV. Only 17.6% of the energy generated by the panels was consumed by the HPTD, with the remaining portion being utilized by other laboratory devices connected to the same grid, contributing to a sustainable future. In addition to meeting the energy demand, the PV system satisfied the entire power requirement of the HPTD. It was determined that the drying chamber and the compressor together accounted for 74.53% of the total exergy destruction in the system, with this cost being predominantly incurred during the drying process. Moreover, based on the exergy, sustainability, and exergoeconomic analyses conducted, it was concluded that the drying chamber, integrated with the fan unit, exhibited the lowest exergy efficiency (57.04%), the highest waste exergy ratio (0.83%), and the lowest exergoeconomic factor value (0.716) among the system components, indicating the need for improvement in the fan-integrated drying chamber.

Suggested Citation

  • Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003392
    DOI: 10.1016/j.renene.2024.120274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.