IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003306.html
   My bibliography  Save this article

Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock

Author

Listed:
  • Zhang, Congyu
  • Chen, Wei-Hsin
  • Saravanakumar, Ayyadurai
  • Lin, Kun-Yi Andrew
  • Zhang, Ying

Abstract

A comprehensive comparison is conducted to explore the conversion performance of torrefaction and hydrothermal carbonization of high-moisture microalga for producing solid biofuel with low expense and environmental impact. The results suggest that when their solid yields are close, the hydrochar has higher HHV (higher heating value) (21.10–25.39 MJ kg−1) and energy yield (72.48–92.29%) than the biochar. The graphitization degrees of the biochar and hydrochar are 1.298–3.107 and 2.193–3.049, respectively. Considering fuel grade, the biochar is in biomass and peat zones, but the hydrochar is only in the biomass zone. The biochar's elemental valence transformation and graphitization degree are better than hydrochar's. The pyrolysis and combustion characteristics of the hydrochar are better than those of the biochar when considering the thermodegradation data, leading to a lower expense and environmental impact. The results are conducive to efficiently figuring out a solution with a comparative advantage for microalgal thermochemical conversion. The hydrothermal carbonization conditions at 160 °C for 2 h are the best operation for microalgal solid biofuel production.

Suggested Citation

  • Zhang, Congyu & Chen, Wei-Hsin & Saravanakumar, Ayyadurai & Lin, Kun-Yi Andrew & Zhang, Ying, 2024. "Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003306
    DOI: 10.1016/j.renene.2024.120265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.