IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003288.html
   My bibliography  Save this article

Wave power extraction from a wave farm of tubular structure integrated oscillating water columns

Author

Listed:
  • Zheng, Siming
  • Michele, Simone
  • Liang, Hui
  • Iglesias, Gregorio
  • Greaves, Deborah

Abstract

To efficiently utilize the abundant wave power in the ocean, it is necessary to deploy a wave farm. This paper considers a wave farm of oscillating water columns (OWCs) integrated into tubular structures. Each OWC device within the wave farm is constructed with a vertical tubular design, incorporating a partially open submerged side that faces the sea. At the top of each device, an air turbine is installed to harness the pneumatic power generated by incoming water waves. To assess the performance of the wave farm, an analytical model is developed using the eigenfunction matching method within the framework of linear potential flow theory. Subsequently, this model is utilized to assess the efficiency of two wave farm setups: a line array with varying numbers of devices and a square array consisting of four devices. When the openings of the OWC devices are deployed on the exterior side of the square array, the majority of the wave power captured by the wave farm is contributed by the windward OWC devices, over a wide range of wave conditions examined. However, when the openings are placed on the interior side of the square array, wave resonance among the OWC devices becomes a significant factor affecting the wave farm’s performance. In this case, the leeward devices could capture more wave power compared to the windward ones. Large wave excitation forces acting on the OWC devices can be excited when the near-trapping of waves arises in a wave farm consisting of a circular array of OWC devices. The physical findings in this paper highlight the importance of the array configuration and opening arrangement for optimizing wave power extraction in wave farms.

Suggested Citation

  • Zheng, Siming & Michele, Simone & Liang, Hui & Iglesias, Gregorio & Greaves, Deborah, 2024. "Wave power extraction from a wave farm of tubular structure integrated oscillating water columns," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003288
    DOI: 10.1016/j.renene.2024.120263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.