IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003161.html
   My bibliography  Save this article

An improved analytical framework for flow prediction inside and downstream of wind farms

Author

Listed:
  • Souaiby, Marwa
  • Porté-Agel, Fernando

Abstract

This study evaluates available analytical wake models for flow prediction inside and downstream of wind farms of different sizes and layouts using large-eddy simulation (LES), and introduces an enhanced analytical framework. All the tested analytical wake models, based on the superposition of individual turbine wakes, systematically overestimate the wake recovery both inside and downstream of the wind farms. The results indicate that the overestimation is linked to the assumption of linear or quasilinear wake expansion, which does not hold at large downstream distances. To address this issue, an enhanced analytical framework is proposed based on the extension of a recently developed streamwise scaling model for single wakes that eliminates the need for the linear wake expansion assumption. Since the new framework computes the wake expansion based on the near-wake length and the local turbulence intensity, different methods for their calculation and the superposition of turbulence intensity within wind farms are evaluated against the LES data. The identified best methods are incorporated into the new analytical framework. The proposed framework consistently yields more accurate power estimates and flow predictions inside and downstream of finite-size wind farms with different sizes and configurations.

Suggested Citation

  • Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003161
    DOI: 10.1016/j.renene.2024.120251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.