IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003033.html
   My bibliography  Save this article

On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model

Author

Listed:
  • Liu, Ding Peng
  • Ferri, Giulio
  • Heo, Taemin
  • Marino, Enzo
  • Manuel, Lance

Abstract

This study is concerned with the estimation of long-term fatigue damage for a floating offshore wind turbine. With the ultimate goal of efficient evaluation of fatigue limit states for floating offshore wind turbine systems, a detailed computational framework is introduced and used to develop a surrogate model using Gaussian process regression. The surrogate model, at first, relies only on a small subset of representative sea states and, then, is supplemented by the evaluation of additional sea states that leads to efficient convergence and accurate prediction of fatigue damage. A 5-MW offshore wind turbine supported by a semi-submersible floating platform is selected to demonstrate the proposed framework. The fore–aft bending moment at the turbine tower base and the fairlead tension in the windward mooring line are used for evaluation. Metocean data provide information on joint statistics of the wind and wave along with their relative likelihoods for the installation site in the Mediterranean Sea, near the coast of Sicily. A coupled frequency-domain model provides needed power spectra for the desired response processes. The proposed approach offers an efficient and accurate alternative to the exhaustive evaluation of a larger number of sea states and, as such, avoids excessive response simulations.

Suggested Citation

  • Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003033
    DOI: 10.1016/j.renene.2024.120238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.